import gradio as gr from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("yuewu/T5_abstract2title") model = T5ForConditionalGeneration.from_pretrained("yuewu/T5_abstract2title") def title2abstract(text): input_ids = tokenizer( text, padding='max_length', max_length=512, return_tensors="pt").input_ids generated_ids = model.generate( input_ids, max_length=128, # num_beams=3, # no_repeat_ngram_size=2, num_return_sequences=3, do_sample=True, top_k=50, top_p=0.95, early_stopping=True) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) output = f'1. {generated_text[0]}\n\n2. {generated_text[1]}\n\n3. {generated_text[2]}' # output = generated_text return output demo = gr.Interface(fn=title2abstract, inputs="text", outputs="text", title="Abstract to title generator", description="Give a chemistry paper abstract and the model will suggest 3 titles.") demo.launch()