"""Demo file for sampling images from TiTok. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import torch from omegaconf import OmegaConf from modeling.titok import TiTok from modeling.maskgit import ImageBert, UViTBert from modeling.rar import RAR def get_config_cli(): cli_conf = OmegaConf.from_cli() yaml_conf = OmegaConf.load(cli_conf.config) conf = OmegaConf.merge(yaml_conf, cli_conf) return conf def get_config(config_path): conf = OmegaConf.load(config_path) return conf def get_titok_tokenizer(config): tokenizer = TiTok(config) tokenizer.load_state_dict(torch.load(config.experiment.tokenizer_checkpoint, map_location="cpu")) tokenizer.eval() tokenizer.requires_grad_(False) return tokenizer def get_titok_generator(config): if config.model.generator.model_type == "ViT": model_cls = ImageBert elif config.model.generator.model_type == "UViT": model_cls = UViTBert else: raise ValueError(f"Unsupported model type {config.model.generator.model_type}") generator = model_cls(config) generator.load_state_dict(torch.load(config.experiment.generator_checkpoint, map_location="cpu")) generator.eval() generator.requires_grad_(False) return generator def get_rar_generator(config): model_cls = RAR generator = model_cls(config) generator.load_state_dict(torch.load(config.experiment.generator_checkpoint, map_location="cpu")) generator.eval() generator.requires_grad_(False) generator.set_random_ratio(0) return generator @torch.no_grad() def sample_fn(generator, tokenizer, labels=None, guidance_scale=3.0, guidance_decay="constant", guidance_scale_pow=3.0, randomize_temperature=2.0, softmax_temperature_annealing=False, num_sample_steps=8, device="cuda", return_tensor=False): generator.eval() tokenizer.eval() if labels is None: # goldfish, chicken, tiger, cat, hourglass, ship, dog, race car, airliner, teddy bear, random labels = [1, 7, 282, 604, 724, 179, 751, 404, 850, torch.randint(0, 999, size=(1,))] if not isinstance(labels, torch.Tensor): labels = torch.LongTensor(labels).to(device) generated_tokens = generator.generate( condition=labels, guidance_scale=guidance_scale, guidance_decay=guidance_decay, guidance_scale_pow=guidance_scale_pow, randomize_temperature=randomize_temperature, softmax_temperature_annealing=softmax_temperature_annealing, num_sample_steps=num_sample_steps) generated_image = tokenizer.decode_tokens( generated_tokens.view(generated_tokens.shape[0], -1) ) if return_tensor: return generated_image generated_image = torch.clamp(generated_image, 0.0, 1.0) generated_image = (generated_image * 255.0).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy() return generated_image