# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Adapted from https://github.com/webdataset/webdataset-imagenet/blob/main/convert-imagenet.py import argparse import os import sys import time import webdataset as wds from datasets import load_dataset def convert_imagenet_to_wds(output_dir, max_train_samples_per_shard, max_val_samples_per_shard): assert not os.path.exists(os.path.join(output_dir, "imagenet-train-000000.tar")) assert not os.path.exists(os.path.join(output_dir, "imagenet-val-000000.tar")) opat = os.path.join(output_dir, "imagenet-train-%06d.tar") output = wds.ShardWriter(opat, maxcount=max_train_samples_per_shard) dataset = load_dataset("imagenet-1k", streaming=True, split="train", use_auth_token=True) now = time.time() for i, example in enumerate(dataset): if i % max_train_samples_per_shard == 0: print(i, file=sys.stderr) img, label = example["image"], example["label"] output.write({"__key__": "%08d" % i, "jpg": img.convert("RGB"), "cls": label}) output.close() time_taken = time.time() - now print(f"Wrote {i+1} train examples in {time_taken // 3600} hours.") opat = os.path.join(output_dir, "imagenet-val-%06d.tar") output = wds.ShardWriter(opat, maxcount=max_val_samples_per_shard) dataset = load_dataset("imagenet-1k", streaming=True, split="validation", use_auth_token=True) now = time.time() for i, example in enumerate(dataset): if i % max_val_samples_per_shard == 0: print(i, file=sys.stderr) img, label = example["image"], example["label"] output.write({"__key__": "%08d" % i, "jpg": img.convert("RGB"), "cls": label}) output.close() time_taken = time.time() - now print(f"Wrote {i+1} val examples in {time_taken // 60} min.") if __name__ == "__main__": # create parase object parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, required=True, help="Path to the output directory.") parser.add_argument("--max_train_samples_per_shard", type=int, default=4000, help="Path to the output directory.") parser.add_argument("--max_val_samples_per_shard", type=int, default=1000, help="Path to the output directory.") args = parser.parse_args() # create output directory os.makedirs(args.output_dir, exist_ok=True) convert_imagenet_to_wds(args.output_dir, args.max_train_samples_per_shard, args.max_val_samples_per_shard)