Spaces:
Runtime error
Runtime error
File size: 18,182 Bytes
cf1798b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
"""
Chatbot Arena (battle) tab.
Users chat with two anonymous models.
"""
import json
import time
import gradio as gr
import numpy as np
from fastchat.constants import (
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
SLOW_MODEL_MSG,
INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
)
from fastchat.model.model_adapter import get_conversation_template
from fastchat.serve.gradio_block_arena_named import flash_buttons
from fastchat.serve.gradio_web_server import (
State,
bot_response,
get_conv_log_filename,
no_change_btn,
enable_btn,
disable_btn,
invisible_btn,
acknowledgment_md,
ip_expiration_dict,
get_ip,
)
from fastchat.utils import (
build_logger,
moderation_filter,
)
logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log")
num_sides = 2
enable_moderation = False
anony_names = ["", ""]
models = []
def set_global_vars_anony(enable_moderation_):
global enable_moderation
enable_moderation = enable_moderation_
def load_demo_side_by_side_anony(models_, url_params):
global models
models = models_
states = (None,) * num_sides
selector_updates = (
gr.Markdown.update(visible=True),
gr.Markdown.update(visible=True),
)
return states + selector_updates
def vote_last_response(states, vote_type, model_selectors, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"models": [x for x in model_selectors],
"states": [x.dict() for x in states],
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
if ":" not in model_selectors[0]:
for i in range(15):
names = (
"### Model A: " + states[0].model_name,
"### Model B: " + states[1].model_name,
)
yield names + ("",) + (disable_btn,) * 4
time.sleep(0.2)
else:
names = (
"### Model A: " + states[0].model_name,
"### Model B: " + states[1].model_name,
)
yield names + ("",) + (disable_btn,) * 4
def leftvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"leftvote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "leftvote", [model_selector0, model_selector1], request
):
yield x
def rightvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"rightvote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "rightvote", [model_selector0, model_selector1], request
):
yield x
def tievote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"tievote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "tievote", [model_selector0, model_selector1], request
):
yield x
def bothbad_vote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"bothbad_vote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "bothbad_vote", [model_selector0, model_selector1], request
):
yield x
def regenerate(state0, state1, request: gr.Request):
logger.info(f"regenerate (anony). ip: {get_ip(request)}")
states = [state0, state1]
for i in range(num_sides):
states[i].conv.update_last_message(None)
return states + [x.to_gradio_chatbot() for x in states] + [""] + [disable_btn] * 6
def clear_history(request: gr.Request):
logger.info(f"clear_history (anony). ip: {get_ip(request)}")
return (
[None] * num_sides
+ [None] * num_sides
+ anony_names
+ [""]
+ [invisible_btn] * 4
+ [disable_btn] * 2
+ [""]
)
def share_click(state0, state1, model_selector0, model_selector1, request: gr.Request):
logger.info(f"share (anony). ip: {get_ip(request)}")
if state0 is not None and state1 is not None:
vote_last_response(
[state0, state1], "share", [model_selector0, model_selector1], request
)
SAMPLING_WEIGHTS = {
# tier 0
"gpt-4": 4,
"gpt-4-turbo": 4,
"gpt-3.5-turbo": 2,
"gpt-3.5-turbo-1106": 2,
"claude-2": 8,
"claude-1": 2,
"claude-instant-1": 8,
"zephyr-7b-beta": 2,
"openchat-3.5": 2,
# tier 1
"deluxe-chat-v1.1": 2,
"palm-2": 1.5,
"llama-2-70b-chat": 1.5,
"llama-2-13b-chat": 1.5,
"codellama-34b-instruct": 1.5,
"vicuna-33b": 8,
"vicuna-13b": 1.5,
"wizardlm-70b": 1.5,
"wizardlm-13b": 1.5,
"qwen-14b-chat": 1.5,
"mistral-7b-instruct": 1.5,
# tier 2
"vicuna-7b": 1.0,
"llama-2-7b-chat": 1.0,
"chatglm2-6b": 1.0,
# deprecated
"zephyr-7b-alpha": 1.5,
"codellama-13b-instruct": 1.0,
"mpt-30b-chat": 1.5,
"guanaco-33b": 1.0,
"fastchat-t5-3b": 0.5,
"alpaca-13b": 0.5,
"mpt-7b-chat": 0.1,
"oasst-pythia-12b": 0.1,
"RWKV-4-Raven-14B": 0.1,
"gpt4all-13b-snoozy": 0.1,
"koala-13b": 0.1,
"stablelm-tuned-alpha-7b": 0.1,
"dolly-v2-12b": 0.1,
"llama-13b": 0.1,
"chatglm-6b": 0.5,
"deluxe-chat-v1": 4,
}
# target model sampling weights will be boosted.
BATTLE_TARGETS = {
"gpt-4": {"claude-2"},
"gpt-4-turbo": {"gpt-4", "gpt-3.5-turbo"},
"gpt-3.5-turbo": {"claude-instant-1", "gpt-4", "claude-2"},
"claude-2": {"gpt-4", "gpt-3.5-turbo", "claude-1"},
"claude-1": {"claude-2", "gpt-4", "gpt-3.5-turbo"},
"claude-instant-1": {"gpt-3.5-turbo", "claude-2"},
"deluxe-chat-v1.1": {"gpt-4"},
"openchat-3.5": {"gpt-3.5-turbo", "llama-2-70b-chat", "zephyr-7b-beta"},
"qwen-14b-chat": {"vicuna-13b", "llama-2-13b-chat", "llama-2-70b-chat"},
"zephyr-7b-alpha": {"mistral-7b-instruct", "llama-2-13b-chat"},
"zephyr-7b-beta": {
"mistral-7b-instruct",
"llama-2-13b-chat",
"llama-2-7b-chat",
"wizardlm-13b",
},
"llama-2-70b-chat": {"gpt-3.5-turbo", "vicuna-33b", "claude-instant-1"},
"llama-2-13b-chat": {"mistral-7b-instruct", "vicuna-13b", "llama-2-70b-chat"},
"llama-2-7b-chat": {"mistral-7b-instruct", "vicuna-7b", "llama-2-13b-chat"},
"mistral-7b-instruct": {
"llama-2-7b-chat",
"llama-2-13b-chat",
"llama-2-70b-chat",
},
"vicuna-33b": {"llama-2-70b-chat", "gpt-3.5-turbo", "claude-instant-1"},
"vicuna-13b": {"llama-2-13b-chat", "llama-2-70b-chat"},
"vicuna-7b": {"llama-2-7b-chat", "mistral-7b-instruct", "llama-2-13b-chat"},
"wizardlm-70b": {"gpt-3.5-turbo", "vicuna-33b", "claude-instant-1"},
"palm-2": {"llama-2-13b-chat", "gpt-3.5-turbo"},
}
SAMPLING_BOOST_MODELS = ["openchat-3.5", "gpt-4-turbo", "gpt-3.5-turbo-1106"]
# outage models won't be sampled.
OUTAGE_MODELS = []
def get_sample_weight(model):
if model in OUTAGE_MODELS:
return 0
weight = SAMPLING_WEIGHTS.get(model, 1.0)
if model in SAMPLING_BOOST_MODELS:
weight *= 5
return weight
def get_battle_pair():
if len(models) == 1:
return models[0], models[0]
model_weights = []
for model in models:
weight = get_sample_weight(model)
model_weights.append(weight)
total_weight = np.sum(model_weights)
model_weights = model_weights / total_weight
chosen_idx = np.random.choice(len(models), p=model_weights)
chosen_model = models[chosen_idx]
rival_models = []
rival_weights = []
for model in models:
if model == chosen_model:
continue
weight = get_sample_weight(model)
if (
weight != 0
and chosen_model in BATTLE_TARGETS
and model in BATTLE_TARGETS[chosen_model]
):
# boost to 50% chance
weight = total_weight / len(BATTLE_TARGETS[chosen_model])
rival_models.append(model)
rival_weights.append(weight)
# for p, w in zip(rival_models, rival_weights):
# print(p, w)
rival_weights = rival_weights / np.sum(rival_weights)
rival_idx = np.random.choice(len(rival_models), p=rival_weights)
rival_model = rival_models[rival_idx]
swap = np.random.randint(2)
if swap == 0:
return chosen_model, rival_model
else:
return rival_model, chosen_model
def add_text(
state0, state1, model_selector0, model_selector1, text, request: gr.Request
):
ip = get_ip(request)
logger.info(f"add_text (anony). ip: {ip}. len: {len(text)}")
states = [state0, state1]
model_selectors = [model_selector0, model_selector1]
# Init states if necessary
if states[0] is None:
assert states[1] is None
model_left, model_right = get_battle_pair()
states = [
State(model_left),
State(model_right),
]
if len(text) <= 0:
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [""]
+ [
no_change_btn,
]
* 6
+ [""]
)
model_list = [states[i].model_name for i in range(num_sides)]
flagged = moderation_filter(text, model_list)
if flagged:
logger.info(f"violate moderation (anony). ip: {ip}. text: {text}")
# overwrite the original text
text = MODERATION_MSG
conv = states[0].conv
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {get_ip(request)}. text: {text}")
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [CONVERSATION_LIMIT_MSG]
+ [
no_change_btn,
]
* 6
+ [""]
)
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off
for i in range(num_sides):
states[i].conv.append_message(states[i].conv.roles[0], text)
states[i].conv.append_message(states[i].conv.roles[1], None)
states[i].skip_next = False
slow_model_msg = ""
for i in range(num_sides):
if "deluxe" in states[i].model_name:
slow_model_msg = SLOW_MODEL_MSG
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [""]
+ [
disable_btn,
]
* 6
+ [slow_model_msg]
)
def bot_response_multi(
state0,
state1,
temperature,
top_p,
max_new_tokens,
request: gr.Request,
):
logger.info(f"bot_response_multi (anony). ip: {get_ip(request)}")
if state0 is None or state0.skip_next:
# This generate call is skipped due to invalid inputs
yield (
state0,
state1,
state0.to_gradio_chatbot(),
state1.to_gradio_chatbot(),
) + (no_change_btn,) * 6
return
states = [state0, state1]
gen = []
for i in range(num_sides):
gen.append(
bot_response(
states[i],
temperature,
top_p,
max_new_tokens,
request,
)
)
chatbots = [None] * num_sides
while True:
stop = True
for i in range(num_sides):
try:
ret = next(gen[i])
states[i], chatbots[i] = ret[0], ret[1]
stop = False
except StopIteration:
pass
yield states + chatbots + [disable_btn] * 6
if stop:
break
def build_side_by_side_ui_anony(models):
notice_markdown = """
# βοΈ Chatbot Arena βοΈ : Benchmarking LLMs in the Wild
| [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
## π Rules
- Ask any question to two anonymous models (e.g., ChatGPT, Claude, Llama) and vote for the better one!
- You can continue chatting until you identify a winner.
- Vote won't be counted if model identity is revealed during conversation.
## π Arena Elo [Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard)
We use **100K** human votes to compile an Elo-based LLM leaderboard.
Find out who is the π₯LLM Champion!
## π Chat now!
"""
states = [gr.State() for _ in range(num_sides)]
model_selectors = [None] * num_sides
chatbots = [None] * num_sides
gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Box(elem_id="share-region-anony"):
with gr.Row():
for i in range(num_sides):
label = "Model A" if i == 0 else "Model B"
with gr.Column():
chatbots[i] = gr.Chatbot(
label=label, elem_id=f"chatbot", height=550
)
with gr.Row():
for i in range(num_sides):
with gr.Column():
model_selectors[i] = gr.Markdown(anony_names[i])
with gr.Row():
slow_warning = gr.Markdown("", elem_id="notice_markdown")
with gr.Row():
leftvote_btn = gr.Button(
value="π A is better", visible=False, interactive=False
)
rightvote_btn = gr.Button(
value="π B is better", visible=False, interactive=False
)
tie_btn = gr.Button(value="π€ Tie", visible=False, interactive=False)
bothbad_btn = gr.Button(
value="π Both are bad", visible=False, interactive=False
)
with gr.Row():
with gr.Column(scale=20):
textbox = gr.Textbox(
show_label=False,
placeholder="π Enter your prompt and press ENTER",
container=False,
elem_id="input_box",
)
with gr.Column(scale=1, min_width=50):
send_btn = gr.Button(value="Send", variant="primary")
with gr.Row() as button_row:
clear_btn = gr.Button(value="π² New Round", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
share_btn = gr.Button(value="π· Share")
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=16,
maximum=1024,
value=512,
step=64,
interactive=True,
label="Max output tokens",
)
gr.Markdown(acknowledgment_md)
# Register listeners
btn_list = [
leftvote_btn,
rightvote_btn,
tie_btn,
bothbad_btn,
regenerate_btn,
clear_btn,
]
leftvote_btn.click(
leftvote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
rightvote_btn.click(
rightvote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
tie_btn.click(
tievote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
bothbad_btn.click(
bothbad_vote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
regenerate_btn.click(
regenerate, states, states + chatbots + [textbox] + btn_list
).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
clear_btn.click(
clear_history,
None,
states + chatbots + model_selectors + [textbox] + btn_list + [slow_warning],
)
share_js = """
function (a, b, c, d) {
const captureElement = document.querySelector('#share-region-anony');
html2canvas(captureElement)
.then(canvas => {
canvas.style.display = 'none'
document.body.appendChild(canvas)
return canvas
})
.then(canvas => {
const image = canvas.toDataURL('image/png')
const a = document.createElement('a')
a.setAttribute('download', 'chatbot-arena.png')
a.setAttribute('href', image)
a.click()
canvas.remove()
});
return [a, b, c, d];
}
"""
share_btn.click(share_click, states + model_selectors, [], _js=share_js)
textbox.submit(
add_text,
states + model_selectors + [textbox],
states + chatbots + [textbox] + btn_list + [slow_warning],
).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons,
[],
btn_list,
)
send_btn.click(
add_text,
states + model_selectors + [textbox],
states + chatbots + [textbox] + btn_list,
).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
return states + model_selectors
|