import torch import spaces import numpy as np from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) import gradio as gr from annotator.util import resize_image, HWC3 from annotator.midas import DepthDetector from annotator.dsine_hub import NormalDetector from annotator.upernet import SegmDetector controlnet_checkpoint = "kujiale-ai/controlnet" # Initialize pipeline controlnet = ControlNetModel.from_pretrained( controlnet_checkpoint, subfolder="control_v1_sd15_layout_fp16", torch_dtype=torch.float16, ) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ).to("cuda") pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) apply_depth = DepthDetector() apply_normal = NormalDetector() apply_segm = SegmDetector() @spaces.GPU(duration=10) def generate( input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, steps, strength, guidance_scale, seed, ): color_image = resize_image(HWC3(input_image), image_resolution) # set seed np.random.seed(seed) torch.manual_seed(seed) with torch.no_grad(): depth_image = apply_depth(color_image) normal_image = apply_normal(color_image) segm_image = apply_segm(color_image) # Prepare Layout Control Image depth_image = np.array(depth_image, dtype=np.float32) / 255.0 depth_image = torch.from_numpy(depth_image[:, :, None])[None].permute( 0, 3, 1, 2 ) normal_image = np.array(normal_image, dtype=np.float32) normal_image = normal_image / 127.5 - 1.0 normal_image = torch.from_numpy(normal_image)[None].permute(0, 3, 1, 2) segm_image = np.array(segm_image, dtype=np.float32) / 255.0 segm_image = torch.from_numpy(segm_image)[None].permute(0, 3, 1, 2) control_image = torch.cat([depth_image, normal_image, segm_image], dim=1) generator = torch.Generator(device="cuda").manual_seed(seed) images = pipe( prompt + a_prompt, negative_prompt=n_prompt, num_images_per_prompt=num_samples, num_inference_steps=steps, image=control_image, generator=generator, guidance_scale=guidance_scale, controlnet_conditioning_scale=strength, ).images return images block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## KuJiaLe Layout ControlNet Demo") with gr.Row(): input_image = gr.Image(source="upload", type="numpy", label="input_image") with gr.Row(): prompt = gr.Textbox(label="Prompt") with gr.Row(): run_button = gr.Button(label="Run") with gr.Row(): with gr.Column(): with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider( label="Images", minimum=1, maximum=2, value=1, step=1 ) image_resolution = gr.Slider( label="Image Resolution", minimum=512, maximum=768, value=768, step=64, ) strength = gr.Slider( label="Control Strength", minimum=0.0, maximum=2.0, value=1, step=0.1, ) steps = gr.Slider( label="Steps", minimum=1, maximum=50, value=25, step=1 ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, value=7.5, step=0.1, ) seed = gr.Slider( label="Seed", minimum=-1, maximum=2147483647, value=1, step=1 ) a_prompt = gr.Textbox( label="Added Prompt", value="best quality, extremely detailed" ) n_prompt = gr.Textbox( label="Negative Prompt", value="longbody, lowres, bad anatomy, human, extra digit, fewer digits, cropped, worst quality, low quality", ) with gr.Row(): image_gallery = gr.Gallery( label="Output", show_label=False, elem_id="gallery" ).style(grid=1, height="auto") ips = [ input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, steps, strength, guidance_scale, seed, ] run_button.click(fn=generate, inputs=ips, outputs=[image_gallery])