from typing import Type, Optional import torch from torch import nn as nn class SimpleMlp(nn.Module): """ A class for very simple multi layer perceptron """ def __init__(self, in_dim=2, out_dim=1, hidden_dim=64, n_layers=2, activation: Type[nn.Module] = nn.ReLU, output_activation: Optional[Type[nn.Module]] = None): super(SimpleMlp, self).__init__() layers = [nn.Linear(in_dim, hidden_dim), activation()] layers.extend([nn.Linear(hidden_dim, hidden_dim), activation()] * (n_layers - 2)) layers.append(nn.Linear(hidden_dim, out_dim)) if output_activation: layers.append(output_activation()) self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x)