Spaces:
Running
on
Zero
Running
on
Zero
/* | |
* SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
* SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
* | |
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
* property and proprietary rights in and to this material, related | |
* documentation and any modifications thereto. Any use, reproduction, | |
* disclosure or distribution of this material and related documentation | |
* without an express license agreement from NVIDIA CORPORATION or | |
* its affiliates is strictly prohibited. | |
*/ | |
//------------------------------------------------------------------------ | |
static torch::Tensor upfirdn2d(torch::Tensor x, torch::Tensor f, int upx, int upy, int downx, int downy, int padx0, int padx1, int pady0, int pady1, bool flip, float gain) | |
{ | |
// Validate arguments. | |
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device"); | |
TORCH_CHECK(f.device() == x.device(), "f must reside on the same device as x"); | |
TORCH_CHECK(f.dtype() == torch::kFloat, "f must be float32"); | |
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large"); | |
TORCH_CHECK(f.numel() <= INT_MAX, "f is too large"); | |
TORCH_CHECK(x.numel() > 0, "x has zero size"); | |
TORCH_CHECK(f.numel() > 0, "f has zero size"); | |
TORCH_CHECK(x.dim() == 4, "x must be rank 4"); | |
TORCH_CHECK(f.dim() == 2, "f must be rank 2"); | |
TORCH_CHECK((x.size(0)-1)*x.stride(0) + (x.size(1)-1)*x.stride(1) + (x.size(2)-1)*x.stride(2) + (x.size(3)-1)*x.stride(3) <= INT_MAX, "x memory footprint is too large"); | |
TORCH_CHECK(f.size(0) >= 1 && f.size(1) >= 1, "f must be at least 1x1"); | |
TORCH_CHECK(upx >= 1 && upy >= 1, "upsampling factor must be at least 1"); | |
TORCH_CHECK(downx >= 1 && downy >= 1, "downsampling factor must be at least 1"); | |
// Create output tensor. | |
const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); | |
int outW = ((int)x.size(3) * upx + padx0 + padx1 - (int)f.size(1) + downx) / downx; | |
int outH = ((int)x.size(2) * upy + pady0 + pady1 - (int)f.size(0) + downy) / downy; | |
TORCH_CHECK(outW >= 1 && outH >= 1, "output must be at least 1x1"); | |
torch::Tensor y = torch::empty({x.size(0), x.size(1), outH, outW}, x.options(), x.suggest_memory_format()); | |
TORCH_CHECK(y.numel() <= INT_MAX, "output is too large"); | |
TORCH_CHECK((y.size(0)-1)*y.stride(0) + (y.size(1)-1)*y.stride(1) + (y.size(2)-1)*y.stride(2) + (y.size(3)-1)*y.stride(3) <= INT_MAX, "output memory footprint is too large"); | |
// Initialize CUDA kernel parameters. | |
upfirdn2d_kernel_params p; | |
p.x = x.data_ptr(); | |
p.f = f.data_ptr<float>(); | |
p.y = y.data_ptr(); | |
p.up = make_int2(upx, upy); | |
p.down = make_int2(downx, downy); | |
p.pad0 = make_int2(padx0, pady0); | |
p.flip = (flip) ? 1 : 0; | |
p.gain = gain; | |
p.inSize = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0)); | |
p.inStride = make_int4((int)x.stride(3), (int)x.stride(2), (int)x.stride(1), (int)x.stride(0)); | |
p.filterSize = make_int2((int)f.size(1), (int)f.size(0)); | |
p.filterStride = make_int2((int)f.stride(1), (int)f.stride(0)); | |
p.outSize = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0)); | |
p.outStride = make_int4((int)y.stride(3), (int)y.stride(2), (int)y.stride(1), (int)y.stride(0)); | |
p.sizeMajor = (p.inStride.z == 1) ? p.inSize.w : p.inSize.w * p.inSize.z; | |
p.sizeMinor = (p.inStride.z == 1) ? p.inSize.z : 1; | |
// Choose CUDA kernel. | |
upfirdn2d_kernel_spec spec; | |
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] | |
{ | |
spec = choose_upfirdn2d_kernel<scalar_t>(p); | |
}); | |
// Set looping options. | |
p.loopMajor = (p.sizeMajor - 1) / 16384 + 1; | |
p.loopMinor = spec.loopMinor; | |
p.loopX = spec.loopX; | |
p.launchMinor = (p.sizeMinor - 1) / p.loopMinor + 1; | |
p.launchMajor = (p.sizeMajor - 1) / p.loopMajor + 1; | |
// Compute grid size. | |
dim3 blockSize, gridSize; | |
if (spec.tileOutW < 0) // large | |
{ | |
blockSize = dim3(4, 32, 1); | |
gridSize = dim3( | |
((p.outSize.y - 1) / blockSize.x + 1) * p.launchMinor, | |
(p.outSize.x - 1) / (blockSize.y * p.loopX) + 1, | |
p.launchMajor); | |
} | |
else // small | |
{ | |
blockSize = dim3(256, 1, 1); | |
gridSize = dim3( | |
((p.outSize.y - 1) / spec.tileOutH + 1) * p.launchMinor, | |
(p.outSize.x - 1) / (spec.tileOutW * p.loopX) + 1, | |
p.launchMajor); | |
} | |
// Launch CUDA kernel. | |
void* args[] = {&p}; | |
AT_CUDA_CHECK(cudaLaunchKernel(spec.kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream())); | |
return y; | |
} | |
//------------------------------------------------------------------------ | |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) | |
{ | |
m.def("upfirdn2d", &upfirdn2d); | |
} | |
//------------------------------------------------------------------------ | |