Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
"""Custom PyTorch ops for efficient bias and activation.""" | |
import os | |
import numpy as np | |
import torch | |
import dnnlib | |
from .. import custom_ops | |
from .. import misc | |
#---------------------------------------------------------------------------- | |
activation_funcs = { | |
'linear': | |
dnnlib.EasyDict(func=lambda x, **_: x, | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=1, | |
ref='', | |
has_2nd_grad=False), | |
'relu': | |
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), | |
def_alpha=0, | |
def_gain=np.sqrt(2), | |
cuda_idx=2, | |
ref='y', | |
has_2nd_grad=False), | |
'lrelu': | |
dnnlib.EasyDict( | |
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), | |
def_alpha=0.2, | |
def_gain=np.sqrt(2), | |
cuda_idx=3, | |
ref='y', | |
has_2nd_grad=False), | |
'tanh': | |
dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=4, | |
ref='y', | |
has_2nd_grad=True), | |
'sigmoid': | |
dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=5, | |
ref='y', | |
has_2nd_grad=True), | |
'elu': | |
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=6, | |
ref='y', | |
has_2nd_grad=True), | |
'selu': | |
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=7, | |
ref='y', | |
has_2nd_grad=True), | |
'softplus': | |
dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=8, | |
ref='y', | |
has_2nd_grad=True), | |
'swish': | |
dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, | |
def_alpha=0, | |
def_gain=np.sqrt(2), | |
cuda_idx=9, | |
ref='x', | |
has_2nd_grad=True), | |
} | |
#---------------------------------------------------------------------------- | |
_plugin = None | |
_null_tensor = torch.empty([0]) | |
def _init(): | |
global _plugin | |
if _plugin is None: | |
_plugin = custom_ops.get_plugin( | |
module_name='bias_act_plugin', | |
sources=['bias_act.cpp', 'bias_act.cu'], | |
headers=['bias_act.h'], | |
source_dir=os.path.dirname(__file__), | |
extra_cuda_cflags=['--use_fast_math'], | |
) | |
return True | |
#---------------------------------------------------------------------------- | |
# @torch.autocast(device_type='cuda') | |
def bias_act(x, | |
b=None, | |
dim=1, | |
act='linear', | |
alpha=None, | |
gain=None, | |
clamp=None, | |
impl='cuda'): | |
r"""Fused bias and activation function. | |
Adds bias `b` to activation tensor `x`, evaluates activation function `act`, | |
and scales the result by `gain`. Each of the steps is optional. In most cases, | |
the fused op is considerably more efficient than performing the same calculation | |
using standard PyTorch ops. It supports first and second order gradients, | |
but not third order gradients. | |
Args: | |
x: Input activation tensor. Can be of any shape. | |
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type | |
as `x`. The shape must be known, and it must match the dimension of `x` | |
corresponding to `dim`. | |
dim: The dimension in `x` corresponding to the elements of `b`. | |
The value of `dim` is ignored if `b` is not specified. | |
act: Name of the activation function to evaluate, or `"linear"` to disable. | |
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. | |
See `activation_funcs` for a full list. `None` is not allowed. | |
alpha: Shape parameter for the activation function, or `None` to use the default. | |
gain: Scaling factor for the output tensor, or `None` to use default. | |
See `activation_funcs` for the default scaling of each activation function. | |
If unsure, consider specifying 1. | |
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable | |
the clamping (default). | |
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). | |
Returns: | |
Tensor of the same shape and datatype as `x`. | |
""" | |
assert isinstance(x, torch.Tensor) | |
assert impl in ['ref', 'cuda'] | |
if impl == 'cuda' and x.device.type == 'cuda' and _init(): | |
return _bias_act_cuda(dim=dim, | |
act=act, | |
alpha=alpha, | |
gain=gain, | |
clamp=clamp).apply(x, b) | |
return _bias_act_ref(x=x, | |
b=b, | |
dim=dim, | |
act=act, | |
alpha=alpha, | |
gain=gain, | |
clamp=clamp) | |
#---------------------------------------------------------------------------- | |
def _bias_act_ref(x, | |
b=None, | |
dim=1, | |
act='linear', | |
alpha=None, | |
gain=None, | |
clamp=None): | |
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops. | |
""" | |
assert isinstance(x, torch.Tensor) | |
assert clamp is None or clamp >= 0 | |
spec = activation_funcs[act] | |
alpha = float(alpha if alpha is not None else spec.def_alpha) | |
gain = float(gain if gain is not None else spec.def_gain) | |
clamp = float(clamp if clamp is not None else -1) | |
# Add bias. | |
if b is not None: | |
assert isinstance(b, torch.Tensor) and b.ndim == 1 | |
assert 0 <= dim < x.ndim | |
assert b.shape[0] == x.shape[dim] | |
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)]) | |
# Evaluate activation function. | |
alpha = float(alpha) | |
x = spec.func(x, alpha=alpha) | |
# Scale by gain. | |
gain = float(gain) | |
if gain != 1: | |
x = x * gain | |
# Clamp. | |
if clamp >= 0: | |
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type | |
return x | |
#---------------------------------------------------------------------------- | |
_bias_act_cuda_cache = dict() | |
# @torch.autocast(device_type='cuda') | |
def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None): | |
"""Fast CUDA implementation of `bias_act()` using custom ops. | |
""" | |
# Parse arguments. | |
assert clamp is None or clamp >= 0 | |
spec = activation_funcs[act] | |
alpha = float(alpha if alpha is not None else spec.def_alpha) | |
gain = float(gain if gain is not None else spec.def_gain) | |
clamp = float(clamp if clamp is not None else -1) | |
# Lookup from cache. | |
key = (dim, act, alpha, gain, clamp) | |
if key in _bias_act_cuda_cache: | |
return _bias_act_cuda_cache[key] | |
# Forward op. | |
class BiasActCuda(torch.autograd.Function): | |
# @torch.cuda.amp.custom_fwd | |
def forward(ctx, x, b): # pylint: disable=arguments-differ | |
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride( | |
1) == 1 else torch.contiguous_format | |
x = x.contiguous(memory_format=ctx.memory_format) | |
b = b.contiguous() if b is not None else _null_tensor | |
y = x | |
if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor: | |
y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, | |
_null_tensor, 0, dim, spec.cuda_idx, | |
alpha, gain, clamp) | |
ctx.save_for_backward( | |
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor, | |
b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor, | |
y if 'y' in spec.ref else _null_tensor) | |
return y | |
# @torch.cuda.amp.custom_bwd | |
def backward(ctx, dy): # pylint: disable=arguments-differ | |
dy = dy.contiguous(memory_format=ctx.memory_format) | |
x, b, y = ctx.saved_tensors | |
dx = None | |
db = None | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | |
dx = dy | |
if act != 'linear' or gain != 1 or clamp >= 0: | |
dx = BiasActCudaGrad.apply(dy, x, b, y) | |
if ctx.needs_input_grad[1]: | |
db = dx.sum([i for i in range(dx.ndim) if i != dim]) | |
return dx, db | |
# Backward op. | |
class BiasActCudaGrad(torch.autograd.Function): | |
# @torch.cuda.amp.custom_fwd | |
def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ | |
ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride( | |
1) == 1 else torch.contiguous_format | |
dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, | |
spec.cuda_idx, alpha, gain, clamp) | |
ctx.save_for_backward(dy if spec.has_2nd_grad else _null_tensor, x, | |
b, y) | |
return dx | |
# @torch.cuda.amp.custom_bwd | |
def backward(ctx, d_dx): # pylint: disable=arguments-differ | |
d_dx = d_dx.contiguous(memory_format=ctx.memory_format) | |
dy, x, b, y = ctx.saved_tensors | |
d_dy = None | |
d_x = None | |
d_b = None | |
d_y = None | |
if ctx.needs_input_grad[0]: | |
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y) | |
if spec.has_2nd_grad and (ctx.needs_input_grad[1] | |
or ctx.needs_input_grad[2]): | |
d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, | |
spec.cuda_idx, alpha, gain, clamp) | |
if spec.has_2nd_grad and ctx.needs_input_grad[2]: | |
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim]) | |
return d_dy, d_x, d_b, d_y | |
# Add to cache. | |
_bias_act_cuda_cache[key] = BiasActCuda | |
return BiasActCuda | |
#---------------------------------------------------------------------------- | |