NIRVANALAN
init
11e6f7b
raw
history blame
7.34 kB
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import glob
import hashlib
import importlib
import os
import re
import shutil
import uuid
import torch
import torch.utils.cpp_extension
from torch.utils.file_baton import FileBaton
#----------------------------------------------------------------------------
# Global options.
verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
#----------------------------------------------------------------------------
# Internal helper funcs.
def _find_compiler_bindir():
patterns = [
'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin',
]
for pattern in patterns:
matches = sorted(glob.glob(pattern))
if len(matches):
return matches[-1]
return None
#----------------------------------------------------------------------------
def _get_mangled_gpu_name():
name = torch.cuda.get_device_name().lower()
out = []
for c in name:
if re.match('[a-z0-9_-]+', c):
out.append(c)
else:
out.append('-')
return ''.join(out)
#----------------------------------------------------------------------------
# Main entry point for compiling and loading C++/CUDA plugins.
_cached_plugins = dict()
def get_plugin(module_name,
sources,
headers=None,
source_dir=None,
**build_kwargs):
assert verbosity in ['none', 'brief', 'full']
if headers is None:
headers = []
if source_dir is not None:
sources = [os.path.join(source_dir, fname) for fname in sources]
headers = [os.path.join(source_dir, fname) for fname in headers]
# Already cached?
if module_name in _cached_plugins:
return _cached_plugins[module_name]
# Print status.
if verbosity == 'full':
print(f'Setting up PyTorch plugin "{module_name}"...')
elif verbosity == 'brief':
print(f'Setting up PyTorch plugin "{module_name}"... ',
end='',
flush=True)
verbose_build = (verbosity == 'full')
# Compile and load.
try: # pylint: disable=too-many-nested-blocks
# Make sure we can find the necessary compiler binaries.
if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
compiler_bindir = _find_compiler_bindir()
if compiler_bindir is None:
raise RuntimeError(
f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".'
)
os.environ['PATH'] += ';' + compiler_bindir
# Some containers set TORCH_CUDA_ARCH_LIST to a list that can either
# break the build or unnecessarily restrict what's available to nvcc.
# Unset it to let nvcc decide based on what's available on the
# machine.
os.environ['TORCH_CUDA_ARCH_LIST'] = ''
# Incremental build md5sum trickery. Copies all the input source files
# into a cached build directory under a combined md5 digest of the input
# source files. Copying is done only if the combined digest has changed.
# This keeps input file timestamps and filenames the same as in previous
# extension builds, allowing for fast incremental rebuilds.
#
# This optimization is done only in case all the source files reside in
# a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
# environment variable is set (we take this as a signal that the user
# actually cares about this.)
#
# EDIT: We now do it regardless of TORCH_EXTENSIOS_DIR, in order to work
# around the *.cu dependency bug in ninja config.
#
all_source_files = sorted(sources + headers)
all_source_dirs = set(
os.path.dirname(fname) for fname in all_source_files)
if len(all_source_dirs
) == 1: # and ('TORCH_EXTENSIONS_DIR' in os.environ):
# Compute combined hash digest for all source files.
hash_md5 = hashlib.md5()
for src in all_source_files:
with open(src, 'rb') as f:
hash_md5.update(f.read())
# Select cached build directory name.
source_digest = hash_md5.hexdigest()
build_top_dir = torch.utils.cpp_extension._get_build_directory(
module_name, verbose=verbose_build) # pylint: disable=protected-access
cached_build_dir = os.path.join(
build_top_dir, f'{source_digest}-{_get_mangled_gpu_name()}')
if not os.path.isdir(cached_build_dir):
tmpdir = f'{build_top_dir}/srctmp-{uuid.uuid4().hex}'
os.makedirs(tmpdir)
for src in all_source_files:
shutil.copyfile(
src, os.path.join(tmpdir, os.path.basename(src)))
try:
os.replace(tmpdir, cached_build_dir) # atomic
except OSError:
# source directory already exists, delete tmpdir and its contents.
shutil.rmtree(tmpdir)
if not os.path.isdir(cached_build_dir): raise
# Compile.
cached_sources = [
os.path.join(cached_build_dir, os.path.basename(fname))
for fname in sources
]
torch.utils.cpp_extension.load(name=module_name,
build_directory=cached_build_dir,
verbose=verbose_build,
sources=cached_sources,
**build_kwargs)
else:
torch.utils.cpp_extension.load(name=module_name,
verbose=verbose_build,
sources=sources,
**build_kwargs)
# Load.
module = importlib.import_module(module_name)
except:
if verbosity == 'brief':
print('Failed!')
raise
# Print status and add to cache dict.
if verbosity == 'full':
print(f'Done setting up PyTorch plugin "{module_name}".')
elif verbosity == 'brief':
print('Done.')
_cached_plugins[module_name] = module
return module
#----------------------------------------------------------------------------