Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,687 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
from .helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
"""
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
"""
class Backbone(Module):
def __init__(self,
input_size,
num_layers,
mode='ir',
drop_ratio=0.4,
affine=True):
super(Backbone, self).__init__()
assert input_size in [112, 224], "input_size should be 112 or 224"
assert num_layers in [50, 100,
152], "num_layers should be 50, 100 or 152"
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64), PReLU(64))
if input_size == 112:
self.output_layer = Sequential(BatchNorm2d(512),
Dropout(drop_ratio), Flatten(),
Linear(512 * 7 * 7, 512),
BatchNorm1d(512, affine=affine))
else:
self.output_layer = Sequential(BatchNorm2d(512),
Dropout(drop_ratio), Flatten(),
Linear(512 * 14 * 14, 512),
BatchNorm1d(512, affine=affine))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
unit_module(bottleneck.in_channel, bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer(x)
return l2_norm(x)
def IR_50(input_size):
"""Constructs a ir-50 model."""
model = Backbone(input_size,
num_layers=50,
mode='ir',
drop_ratio=0.4,
affine=False)
return model
def IR_101(input_size):
"""Constructs a ir-101 model."""
model = Backbone(input_size,
num_layers=100,
mode='ir',
drop_ratio=0.4,
affine=False)
return model
def IR_152(input_size):
"""Constructs a ir-152 model."""
model = Backbone(input_size,
num_layers=152,
mode='ir',
drop_ratio=0.4,
affine=False)
return model
def IR_SE_50(input_size):
"""Constructs a ir_se-50 model."""
model = Backbone(input_size,
num_layers=50,
mode='ir_se',
drop_ratio=0.4,
affine=False)
return model
def IR_SE_101(input_size):
"""Constructs a ir_se-101 model."""
model = Backbone(input_size,
num_layers=100,
mode='ir_se',
drop_ratio=0.4,
affine=False)
return model
def IR_SE_152(input_size):
"""Constructs a ir_se-152 model."""
model = Backbone(input_size,
num_layers=152,
mode='ir_se',
drop_ratio=0.4,
affine=False)
return model
|