Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,870 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
# https://github.com/JingyunLiang/SwinIR/blob/main/models/network_swinir.py#L812
import copy
import math
from collections import namedtuple
from contextlib import contextmanager, nullcontext
from functools import partial, wraps
from pathlib import Path
from random import random
from einops import rearrange, repeat, reduce, pack, unpack
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from torch import einsum, nn
from beartype.typing import List, Union
from beartype import beartype
from tqdm.auto import tqdm
from pdb import set_trace as st
# helper functions, from:
# https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
def exists(val):
return val is not None
def identity(t, *args, **kwargs):
return t
def divisible_by(numer, denom):
return (numer % denom) == 0
def first(arr, d=None):
if len(arr) == 0:
return d
return arr[0]
def maybe(fn):
@wraps(fn)
def inner(x):
if not exists(x):
return x
return fn(x)
return inner
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
def compact(input_dict):
return {key: value for key, value in input_dict.items() if exists(value)}
def maybe_transform_dict_key(input_dict, key, fn):
if key not in input_dict:
return input_dict
copied_dict = input_dict.copy()
copied_dict[key] = fn(copied_dict[key])
return copied_dict
def cast_uint8_images_to_float(images):
if not images.dtype == torch.uint8:
return images
return images / 255
def module_device(module):
return next(module.parameters()).device
def zero_init_(m):
nn.init.zeros_(m.weight)
if exists(m.bias):
nn.init.zeros_(m.bias)
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def pad_tuple_to_length(t, length, fillvalue=None):
remain_length = length - len(t)
if remain_length <= 0:
return t
return (*t, *((fillvalue, ) * remain_length))
# helper classes
class Identity(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
# tensor helpers
def log(t, eps: float = 1e-12):
return torch.log(t.clamp(min=eps))
def l2norm(t):
return F.normalize(t, dim=-1)
def right_pad_dims_to(x, t):
padding_dims = x.ndim - t.ndim
if padding_dims <= 0:
return t
return t.view(*t.shape, *((1, ) * padding_dims))
def masked_mean(t, *, dim, mask=None):
if not exists(mask):
return t.mean(dim=dim)
denom = mask.sum(dim=dim, keepdim=True)
mask = rearrange(mask, 'b n -> b n 1')
masked_t = t.masked_fill(~mask, 0.)
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
def resize_image_to(image,
target_image_size,
clamp_range=None,
mode='nearest'):
orig_image_size = image.shape[-1]
if orig_image_size == target_image_size:
return image
out = F.interpolate(image, target_image_size, mode=mode)
if exists(clamp_range):
out = out.clamp(*clamp_range)
return out
def calc_all_frame_dims(downsample_factors: List[int], frames):
if not exists(frames):
return (tuple(), ) * len(downsample_factors)
all_frame_dims = []
for divisor in downsample_factors:
assert divisible_by(frames, divisor)
all_frame_dims.append((frames // divisor, ))
return all_frame_dims
def safe_get_tuple_index(tup, index, default=None):
if len(tup) <= index:
return default
return tup[index]
# image normalization functions
# ddpms expect images to be in the range of -1 to 1
def normalize_neg_one_to_one(img):
return img * 2 - 1
def unnormalize_zero_to_one(normed_img):
return (normed_img + 1) * 0.5
# def Upsample(dim, dim_out=None):
# dim_out = default(dim_out, dim)
# return nn.Sequential(nn.Upsample(scale_factor=2, mode='nearest'),
# nn.Conv2d(dim, dim_out, 3, padding=1))
class PixelShuffleUpsample(nn.Module):
"""
code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
"""
def __init__(self, dim, dim_out=None):
super().__init__()
dim_out = default(dim_out, dim)
conv = nn.Conv2d(dim, dim_out * 4, 1)
self.net = nn.Sequential(conv, nn.SiLU(), nn.PixelShuffle(2))
self.init_conv_(conv)
def init_conv_(self, conv):
o, i, h, w = conv.weight.shape
conv_weight = torch.empty(o // 4, i, h, w)
nn.init.kaiming_uniform_(conv_weight)
conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...')
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def forward(self, x):
return self.net(x)
class ResidualBlock(nn.Module):
def __init__(self,
dim_in,
dim_out,
dim_inter=None,
use_norm=True,
norm_layer=nn.BatchNorm2d,
bias=False):
super().__init__()
if dim_inter is None:
dim_inter = dim_out
if use_norm:
self.conv = nn.Sequential(
norm_layer(dim_in),
nn.ReLU(True),
nn.Conv2d(dim_in,
dim_inter,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
norm_layer(dim_inter),
nn.ReLU(True),
nn.Conv2d(dim_inter,
dim_out,
3,
1,
1,
bias=bias,
padding_mode='reflect'),
)
else:
self.conv = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(dim_in, dim_inter, 3, 1, 1),
nn.ReLU(True),
nn.Conv2d(dim_inter, dim_out, 3, 1, 1),
)
self.short_cut = None
if dim_in != dim_out:
self.short_cut = nn.Conv2d(dim_in, dim_out, 1, 1)
def forward(self, feats):
feats_out = self.conv(feats)
if self.short_cut is not None:
feats_out = self.short_cut(feats) + feats_out
else:
feats_out = feats_out + feats
return feats_out
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. '
'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
class PixelUnshuffleUpsample(nn.Module):
def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
super().__init__()
self.conv_after_body = nn.Conv2d(output_dim, output_dim, 3, 1, 1)
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(output_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.upsample = Upsample(sr_ratio, num_feat) # 4 time SR
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
def forward(self, x, input_skip_connection=True, *args, **kwargs):
# x = self.conv_first(x)
if input_skip_connection:
x = self.conv_after_body(x) + x
else:
x = self.conv_after_body(x)
x = self.conv_before_upsample(x)
x = self.conv_last(self.upsample(x))
return x
class Conv3x3TriplaneTransformation(nn.Module):
# used in the final layer before triplane
def __init__(self, input_dim, output_dim) -> None:
super().__init__()
self.conv_after_unpachify = nn.Sequential(
nn.Conv2d(input_dim, output_dim, 3, 1, 1),
nn.LeakyReLU(inplace=True)
)
self.conv_before_rendering = nn.Sequential(
nn.Conv2d(output_dim, output_dim, 3, 1, 1),
nn.LeakyReLU(inplace=True))
def forward(self, unpachified_latent):
latent = self.conv_after_unpachify(unpachified_latent) # no residual connections here
latent = self.conv_before_rendering(latent) + latent
return latent
# https://github.com/JingyunLiang/SwinIR/blob/6545850fbf8df298df73d81f3e8cba638787c8bd/models/network_swinir.py#L750
class NearestConvSR(nn.Module):
"""
code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
"""
def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
super().__init__()
self.upscale = sr_ratio
self.conv_after_body = nn.Conv2d(output_dim, output_dim, 3, 1, 1)
self.conv_before_upsample = nn.Sequential(nn.Conv2d(output_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
if self.upscale == 4:
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x, *args, **kwargs):
# x = self.conv_first(x)
x = self.conv_after_body(x) + x
x = self.conv_before_upsample(x)
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
if self.upscale == 4:
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
x = self.conv_last(self.lrelu(self.conv_hr(x)))
return x
# https://github.com/yumingj/C2-Matching/blob/fa171ca6707c6f16a5d04194ce866ea70bb21d2b/mmsr/models/archs/ref_restoration_arch.py#L65
class NearestConvSR_Residual(NearestConvSR):
# learn residual + normalize
def __init__(self, output_dim, num_feat=128, num_out_ch=3, sr_ratio=4, *args, **kwargs) -> None:
super().__init__(output_dim, num_feat, num_out_ch, sr_ratio, *args, **kwargs)
# self.mean = torch.Tensor((0.485, 0.456, 0.406)).view(1,3,1,1) # imagenet mean
self.act = nn.Tanh()
def forward(self, x, base_x, *args, **kwargs):
# base_x: low-resolution 3D rendering, for residual addition
# self.mean = self.mean.type_as(x)
# x = super().forward(x).clamp(-1,1)
x = super().forward(x)
x = self.act(x) # residual normalize to [-1,1]
scale = x.shape[-1] // base_x.shape[-1] # 2 or 4
x = x + F.interpolate(base_x, None, scale, 'bilinear', False) # add residual; [-1,1] range
# return x + 2 * self.mean
return x
class UpsampleOneStep(nn.Sequential):
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
Used in lightweight SR to save parameters.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
self.num_feat = num_feat
self.input_resolution = input_resolution
m = []
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
m.append(nn.PixelShuffle(scale))
super(UpsampleOneStep, self).__init__(*m)
def flops(self):
H, W = self.input_resolution
flops = H * W * self.num_feat * 3 * 9
return flops
# class PixelShuffledDirect(nn.Module):
|