Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
from tqdm import tqdm, trange | |
import imageio | |
from pdb import set_trace as st | |
import functools | |
import os | |
import numpy as np | |
import blobfile as bf | |
import torch as th | |
import torch.distributed as dist | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
import matplotlib.pyplot as plt | |
from torch.optim import AdamW | |
from . import dist_util, logger | |
from .fp16_util import MixedPrecisionTrainer | |
from .nn import update_ema | |
from .resample import LossAwareSampler, UniformSampler | |
from pathlib import Path | |
# For ImageNet experiments, this was a good default value. | |
# We found that the lg_loss_scale quickly climbed to | |
# 20-21 within the first ~1K steps of training. | |
INITIAL_LOG_LOSS_SCALE = 20.0 | |
# use_amp = True | |
# use_amp = False | |
# if use_amp: | |
# logger.log('ddpm use AMP to accelerate training') | |
class TrainLoop: | |
def __init__( | |
self, | |
*, | |
model, | |
diffusion, | |
data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
save_interval, | |
resume_checkpoint, | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
schedule_sampler=None, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
use_amp=False, | |
model_name='ddpm', | |
train_vae=True, | |
compile=False, | |
clip_grad_throld=1.0, | |
**kwargs | |
): | |
self.kwargs = kwargs | |
self.clip_grad_throld = clip_grad_throld | |
self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512)) | |
self.pool_256 = th.nn.AdaptiveAvgPool2d((256, 256)) | |
self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128)) | |
self.pool_64 = th.nn.AdaptiveAvgPool2d((64, 64)) | |
self.use_amp = use_amp | |
self.dtype = th.float32 | |
# if use_amp: | |
# if th.backends.cuda.matmul.allow_tf32: # a100 | |
# self.dtype = th.bfloat16 | |
# else: | |
# self.dtype = th.float16 | |
# else: | |
if use_amp: | |
if th.cuda.get_device_capability(0)[0] < 8: | |
self.dtype = th.float16 # e.g., v100 | |
else: | |
self.dtype = th.bfloat16 # e.g., a100 / a6000 | |
self.model_name = model_name | |
self.model = model | |
self.diffusion = diffusion | |
self.data = data | |
self.batch_size = batch_size | |
self.microbatch = microbatch if microbatch > 0 else batch_size | |
self.lr = lr | |
self.ema_rate = ([ema_rate] if isinstance(ema_rate, float) else | |
[float(x) for x in ema_rate.split(",")]) | |
self.log_interval = log_interval | |
self.save_interval = save_interval | |
self.resume_checkpoint = resume_checkpoint | |
self.use_fp16 = use_fp16 | |
self.fp16_scale_growth = fp16_scale_growth | |
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion) | |
self.weight_decay = weight_decay | |
self.lr_anneal_steps = lr_anneal_steps | |
self.step = 0 | |
self.resume_step = 0 | |
self.global_batch = self.batch_size * dist.get_world_size() | |
self.train_vae = train_vae | |
self.sync_cuda = th.cuda.is_available() | |
self.triplane_scaling_divider = 1.0 | |
self.latent_name = 'latent_normalized_2Ddiffusion' # normalized triplane latent | |
self.render_latent_behaviour = 'decode_after_vae' # directly render using triplane operations | |
self._setup_model() | |
self._load_model() | |
self._setup_opt() | |
def _load_model(self): | |
self._load_and_sync_parameters() | |
def _setup_opt(self): | |
self.opt = AdamW(self.mp_trainer.master_params, | |
lr=self.lr, | |
weight_decay=self.weight_decay) | |
def _setup_model(self): | |
# st() | |
self.mp_trainer = MixedPrecisionTrainer( | |
model=self.model, | |
use_fp16=self.use_fp16, | |
fp16_scale_growth=self.fp16_scale_growth, | |
use_amp=self.use_amp, | |
model_name=self.model_name, | |
clip_grad_throld=self.clip_grad_throld, | |
) | |
if self.resume_step: | |
self._load_optimizer_state() | |
# Model was resumed, either due to a restart or a checkpoint | |
# being specified at the command line. | |
self.ema_params = [ | |
self._load_ema_parameters(rate) for rate in self.ema_rate | |
] | |
else: | |
self.ema_params = [ | |
copy.deepcopy(self.mp_trainer.master_params) | |
for _ in range(len(self.ema_rate)) | |
] | |
# for compatability | |
# print('creating DDP') | |
if th.cuda.is_available(): | |
self.use_ddp = True | |
self.ddpm_model = self.model | |
self.ddp_model = DDP( | |
self.model, | |
device_ids=[dist_util.dev()], | |
output_device=dist_util.dev(), | |
broadcast_buffers=False, | |
bucket_cap_mb=128, | |
find_unused_parameters=False, | |
) | |
else: | |
if dist.get_world_size() > 1: | |
logger.warn("Distributed training requires CUDA. " | |
"Gradients will not be synchronized properly!") | |
self.use_ddp = False | |
self.ddp_model = self.model | |
# print('creating DDP done') | |
# if compile: | |
# self.model = th.compile(self.model) # some op will break graph now | |
# logger.warn("compiling...") | |
def _load_and_sync_parameters(self): | |
resume_checkpoint, resume_step = find_resume_checkpoint( | |
) or self.resume_checkpoint | |
if resume_checkpoint: | |
if not Path(resume_checkpoint).exists(): | |
logger.log( | |
f"failed to load model from checkpoint: {resume_checkpoint}, not exist" | |
) | |
return | |
# self.resume_step = parse_resume_step_from_filename(resume_checkpoint) | |
self.resume_step = resume_step # TODO, EMA part | |
if dist.get_rank() == 0: | |
logger.log( | |
f"loading model from checkpoint: {resume_checkpoint}...") | |
# if model is None: | |
# model = self.model | |
self.model.load_state_dict( | |
dist_util.load_state_dict( | |
resume_checkpoint, | |
map_location=dist_util.dev(), | |
)) | |
# ! debugging, remove to check which key fails. | |
dist_util.sync_params(self.model.parameters()) | |
# dist_util.sync_params(self.model.named_parameters()) | |
def _load_ema_parameters(self, | |
rate, | |
model=None, | |
mp_trainer=None, | |
model_name='ddpm'): | |
if mp_trainer is None: | |
mp_trainer = self.mp_trainer | |
if model is None: | |
model = self.model | |
ema_params = copy.deepcopy(mp_trainer.master_params) | |
main_checkpoint, _ = find_resume_checkpoint( | |
self.resume_checkpoint, model_name) or self.resume_checkpoint | |
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, | |
rate, model_name) | |
if ema_checkpoint: | |
if dist_util.get_rank() == 0: | |
if not Path(ema_checkpoint).exists(): | |
logger.log( | |
f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist" | |
) | |
return | |
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
map_location = { | |
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
} # configure map_location properly | |
state_dict = dist_util.load_state_dict( | |
ema_checkpoint, map_location=map_location) | |
model_ema_state_dict = model.state_dict() | |
for k, v in state_dict.items(): | |
if k in model_ema_state_dict.keys() and v.size( | |
) == model_ema_state_dict[k].size(): | |
model_ema_state_dict[k] = v | |
# elif 'IN' in k and model_name == 'rec' and getattr(model.decoder, 'decomposed_IN', False): | |
# model_ema_state_dict[k.replace('IN', 'superresolution.norm.norm_layer')] = v # decomposed IN | |
else: | |
print('ignore key: ', k, ": ", v.size()) | |
ema_params = mp_trainer.state_dict_to_master_params( | |
model_ema_state_dict) | |
del state_dict | |
# print('ema mark 3, ', model_name, flush=True) | |
if dist_util.get_world_size() > 1: | |
dist_util.sync_params(ema_params) | |
# print('ema mark 4, ', model_name, flush=True) | |
# del ema_params | |
return ema_params | |
def _load_ema_parameters_freezeAE( | |
self, | |
rate, | |
model, | |
# mp_trainer=None, | |
model_name='rec'): | |
# if mp_trainer is None: | |
# mp_trainer = self.mp_trainer | |
# if model is None: | |
# model = self.model_rec | |
# ema_params = copy.deepcopy(mp_trainer.master_params) | |
main_checkpoint, _ = find_resume_checkpoint( | |
self.resume_checkpoint, model_name) or self.resume_checkpoint | |
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, | |
rate, model_name) | |
if ema_checkpoint: | |
if dist_util.get_rank() == 0: | |
if not Path(ema_checkpoint).exists(): | |
logger.log( | |
f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist" | |
) | |
return | |
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
map_location = { | |
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
} # configure map_location properly | |
state_dict = dist_util.load_state_dict( | |
ema_checkpoint, map_location=map_location) | |
model_ema_state_dict = model.state_dict() | |
for k, v in state_dict.items(): | |
if k in model_ema_state_dict.keys() and v.size( | |
) == model_ema_state_dict[k].size(): | |
model_ema_state_dict[k] = v | |
else: | |
print('ignore key: ', k, ": ", v.size()) | |
ema_params = mp_trainer.state_dict_to_master_params( | |
model_ema_state_dict) | |
del state_dict | |
# print('ema mark 3, ', model_name, flush=True) | |
if dist_util.get_world_size() > 1: | |
dist_util.sync_params(ema_params) | |
# print('ema mark 4, ', model_name, flush=True) | |
# del ema_params | |
return ema_params | |
# def _load_ema_parameters(self, rate): | |
# ema_params = copy.deepcopy(self.mp_trainer.master_params) | |
# main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint | |
# ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate) | |
# if ema_checkpoint: | |
# if dist.get_rank() == 0: | |
# logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
# state_dict = dist_util.load_state_dict( | |
# ema_checkpoint, map_location=dist_util.dev() | |
# ) | |
# ema_params = self.mp_trainer.state_dict_to_master_params(state_dict) | |
# dist_util.sync_params(ema_params) | |
# return ema_params | |
def _load_optimizer_state(self): | |
main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint | |
opt_checkpoint = bf.join(bf.dirname(main_checkpoint), | |
f"opt{self.resume_step:06}.pt") | |
if bf.exists(opt_checkpoint): | |
logger.log( | |
f"loading optimizer state from checkpoint: {opt_checkpoint}") | |
state_dict = dist_util.load_state_dict( | |
opt_checkpoint, map_location=dist_util.dev()) | |
self.opt.load_state_dict(state_dict) | |
def run_loop(self): | |
while (not self.lr_anneal_steps | |
or self.step + self.resume_step < self.lr_anneal_steps): | |
batch, cond = next(self.data) | |
self.run_step(batch, cond) | |
if self.step % self.log_interval == 0: | |
logger.dumpkvs() | |
if self.step % self.save_interval == 0: | |
self.save() | |
# Run for a finite amount of time in integration tests. | |
if os.environ.get("DIFFUSION_TRAINING_TEST", | |
"") and self.step > 0: | |
return | |
self.step += 1 | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save() | |
def run_step(self, batch, cond): | |
self.forward_backward(batch, cond) | |
took_step = self.mp_trainer.optimize(self.opt) | |
if took_step: | |
self._update_ema() | |
self._anneal_lr() | |
self.log_step() | |
def forward_backward(self, batch, cond): | |
self.mp_trainer.zero_grad() | |
for i in range(0, batch.shape[0], self.microbatch): | |
# st() | |
with th.autocast(device_type=dist_util.dev(), | |
dtype=th.float16, | |
enabled=self.mp_trainer.use_amp): | |
micro = batch[i:i + self.microbatch].to(dist_util.dev()) | |
micro_cond = { | |
k: v[i:i + self.microbatch].to(dist_util.dev()) | |
for k, v in cond.items() | |
} | |
last_batch = (i + self.microbatch) >= batch.shape[0] | |
t, weights = self.schedule_sampler.sample( | |
micro.shape[0], dist_util.dev()) | |
compute_losses = functools.partial( | |
self.diffusion.training_losses, | |
self.ddp_model, | |
micro, | |
t, | |
model_kwargs=micro_cond, | |
) | |
if last_batch or not self.use_ddp: | |
losses = compute_losses() | |
else: | |
with self.ddp_model.no_sync(): | |
losses = compute_losses() | |
if isinstance(self.schedule_sampler, LossAwareSampler): | |
self.schedule_sampler.update_with_local_losses( | |
t, losses["loss"].detach()) | |
loss = (losses["loss"] * weights).mean() | |
log_loss_dict(self.diffusion, t, | |
{k: v * weights | |
for k, v in losses.items()}) | |
self.mp_trainer.backward(loss) | |
def _update_ema(self): | |
for rate, params in zip(self.ema_rate, self.ema_params): | |
update_ema(params, self.mp_trainer.master_params, rate=rate) | |
def _anneal_lr(self): | |
if not self.lr_anneal_steps: | |
return | |
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps | |
lr = self.lr * (1 - frac_done) | |
for param_group in self.opt.param_groups: | |
param_group["lr"] = lr | |
def log_step(self): | |
logger.logkv("step", self.step + self.resume_step) | |
logger.logkv("samples", | |
(self.step + self.resume_step + 1) * self.global_batch) | |
def _make_vis_img(self, pred): | |
# if True: | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
pred_depth.min()) | |
pred_depth = pred_depth.cpu()[0].permute(1, 2, 0).numpy() | |
pred_depth = (plt.cm.viridis(pred_depth[..., 0])[..., :3]) * 2 - 1 | |
pred_depth = th.from_numpy(pred_depth).to( | |
pred['image_raw'].device).permute(2, 0, 1).unsqueeze(0) | |
# rend_normal = pred['rend_normal'] | |
# if 'image_sr' in pred: | |
# gen_img = pred['image_sr'] | |
# if pred['image_sr'].shape[-1] == 512: | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_512(pred['image_raw']), gen_img, | |
# self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# elif pred['image_sr'].shape[-1] == 128: | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_128(pred['image_raw']), pred['image_sr'], | |
# self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# else: | |
gen_img = pred['image_raw'] | |
pred_vis = th.cat( | |
[ | |
gen_img, | |
# rend_normal, | |
pred_depth, | |
], | |
dim=-1) # B, 3, H, W | |
return pred_vis | |
def render_video_given_triplane(self, | |
planes, | |
rec_model, | |
name_prefix='0', | |
save_img=False, | |
render_reference=None, | |
export_mesh=False): | |
planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments. | |
# sr_w_code = getattr(self.ddp_rec_model.module.decoder, 'w_avg', None) | |
# sr_w_code = None | |
batch_size = planes.shape[0] | |
# if sr_w_code is not None: | |
# sr_w_code = sr_w_code.reshape(1, 1, | |
# -1).repeat_interleave(batch_size, 0) | |
# used during diffusion sampling inference | |
# if not save_img: | |
# ! mesh | |
if planes.shape[1] == 16: # ffhq/car | |
ddpm_latent = { | |
self.latent_name: planes[:, :12], | |
'bg_plane': planes[:, 12:16], | |
} | |
else: | |
ddpm_latent = { | |
self.latent_name: planes, | |
} | |
ddpm_latent.update(rec_model(latent=ddpm_latent, behaviour='decode_after_vae_no_render')) | |
if export_mesh: | |
# if True: | |
# mesh_size = 512 | |
# mesh_size = 256 | |
mesh_size = 384 | |
# mesh_size = 320 | |
# mesh_thres = 3 # TODO, requires tuning | |
# mesh_thres = 5 # TODO, requires tuning | |
mesh_thres = 10 # TODO, requires tuning | |
import mcubes | |
import trimesh | |
dump_path = f'{logger.get_dir()}/mesh/' | |
os.makedirs(dump_path, exist_ok=True) | |
grid_out = rec_model( | |
latent=ddpm_latent, | |
grid_size=mesh_size, | |
behaviour='triplane_decode_grid', | |
) | |
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres) | |
vtx = vtx / (mesh_size - 1) * 2 - 1 | |
# vtx_tensor = th.tensor(vtx, dtype=th.float32, device=dist_util.dev()).unsqueeze(0) | |
# vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1) | |
# vtx_colors = (vtx_colors * 255).astype(np.uint8) | |
# mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) | |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces,) | |
mesh_dump_path = os.path.join(dump_path, f'{name_prefix}.ply') | |
mesh.export(mesh_dump_path, 'ply') | |
print(f"Mesh dumped to {dump_path}") | |
del grid_out, mesh | |
th.cuda.empty_cache() | |
# return | |
video_out = imageio.get_writer( | |
f'{logger.get_dir()}/triplane_{name_prefix}.mp4', | |
mode='I', | |
fps=15, | |
codec='libx264') | |
if planes.shape[1] == 16: # ffhq/car | |
ddpm_latent = { | |
self.latent_name: planes[:, :12], | |
'bg_plane': planes[:, 12:16], | |
} | |
else: | |
ddpm_latent = { | |
self.latent_name: planes, | |
} | |
# TODO, duplicated? | |
ddpm_latent.update(rec_model(latent=ddpm_latent, behaviour='decode_after_vae_no_render')) | |
# planes = planes.repeat_interleave(micro['c'].shape[0], 0) | |
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
# micro_batchsize = 2 | |
# micro_batchsize = batch_size | |
if render_reference is None: | |
render_reference = self.eval_data # compat | |
else: # use train_traj | |
for key in ['ins', 'bbox', 'caption']: | |
if key in render_reference: | |
render_reference.pop(key) | |
# render_reference.pop('bbox') | |
# render_reference.pop('caption') | |
# compat lst for enumerate | |
render_reference = [ { k:v[idx:idx+1] for k, v in render_reference.items() } for idx in range(40) ] | |
# for i, batch in enumerate(tqdm(self.eval_data)): | |
for i, batch in enumerate(tqdm(render_reference)): | |
micro = { | |
k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v | |
for k, v in batch.items() | |
} | |
# micro = {'c': batch['c'].to(dist_util.dev()).repeat_interleave(batch_size, 0)} | |
# all_pred = [] | |
pred = rec_model( | |
img=None, | |
c=micro['c'], | |
latent=ddpm_latent, | |
# latent={ | |
# # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None | |
# k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None | |
# for k, v in ddpm_latent.items() | |
# }, | |
behaviour='triplane_dec') | |
# if True: | |
# pred_depth = pred['image_depth'] | |
# pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
# pred_depth.min()) | |
# if 'image_sr' in pred: | |
# gen_img = pred['image_sr'] | |
# if pred['image_sr'].shape[-1] == 512: | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_512(pred['image_raw']), gen_img, | |
# self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# elif pred['image_sr'].shape[-1] == 128: | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_128(pred['image_raw']), pred['image_sr'], | |
# self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# else: | |
# gen_img = pred['image_raw'] | |
# pred_vis = th.cat( | |
# [ | |
# # self.pool_128(micro['img']), | |
# self.pool_128(gen_img), | |
# self.pool_128(pred_depth.repeat_interleave(3, dim=1)) | |
# ], | |
# dim=-1) # B, 3, H, W | |
pred_vis = self._make_vis_img(pred) | |
if save_img: | |
for batch_idx in range(gen_img.shape[0]): | |
sampled_img = Image.fromarray( | |
(gen_img[batch_idx].permute(1, 2, 0).cpu().numpy() * | |
127.5 + 127.5).clip(0, 255).astype(np.uint8)) | |
if sampled_img.size != (512, 512): | |
sampled_img = sampled_img.resize( | |
(128, 128), Image.HAMMING) # for shapenet | |
sampled_img.save(logger.get_dir() + | |
'/FID_Cals/{}_{}.png'.format( | |
int(name_prefix) * batch_size + | |
batch_idx, i)) | |
# print('FID_Cals/{}_{}.png'.format(int(name_prefix)*batch_size+batch_idx, i)) | |
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
vis = vis * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
# if vis.shape[0] > 1: | |
# vis = np.concatenate(np.split(vis, vis.shape[0], axis=0), | |
# axis=-3) | |
# if not save_img: | |
for j in range(vis.shape[0] | |
): # ! currently only export one plane at a time | |
video_out.append_data(vis[j]) | |
# if not save_img: | |
video_out.close() | |
del video_out | |
print('logged video to: ', | |
f'{logger.get_dir()}/triplane_{name_prefix}.mp4') | |
del vis, pred_vis, micro, pred, | |
def save(self): | |
def save_checkpoint(rate, params): | |
state_dict = self.mp_trainer.master_params_to_state_dict(params) | |
if dist.get_rank() == 0: | |
logger.log(f"saving model {rate}...") | |
if not rate: | |
filename = f"model{(self.step+self.resume_step):07d}.pt" | |
else: | |
filename = f"ema_{rate}_{(self.step+self.resume_step):07d}.pt" | |
with bf.BlobFile(bf.join(get_blob_logdir(), filename), | |
"wb") as f: | |
th.save(state_dict, f) | |
save_checkpoint(0, self.mp_trainer.master_params) | |
for rate, params in zip(self.ema_rate, self.ema_params): | |
save_checkpoint(rate, params) | |
if dist.get_rank() == 0: | |
with bf.BlobFile( | |
bf.join(get_blob_logdir(), | |
f"opt{(self.step+self.resume_step):07d}.pt"), | |
"wb", | |
) as f: | |
th.save(self.opt.state_dict(), f) | |
dist.barrier() | |
def parse_resume_step_from_filename(filename): | |
""" | |
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the | |
checkpoint's number of steps. | |
""" | |
# split1 = Path(filename).stem[-6:] | |
split1 = Path(filename).stem[-7:] | |
# split = filename.split("model") | |
# if len(split) < 2: | |
# return 0 | |
# split1 = split[-1].split(".")[0] | |
try: | |
return int(split1) | |
except ValueError: | |
print('fail to load model step', split1) | |
return 0 | |
def get_blob_logdir(): | |
# You can change this to be a separate path to save checkpoints to | |
# a blobstore or some external drive. | |
return logger.get_dir() | |
def find_resume_checkpoint(resume_checkpoint='', model_name='ddpm'): | |
# On your infrastructure, you may want to override this to automatically | |
# discover the latest checkpoint on your blob storage, etc. | |
if resume_checkpoint != '': | |
step = parse_resume_step_from_filename(resume_checkpoint) | |
split = resume_checkpoint.split("model") | |
resume_ckpt_path = str( | |
Path(split[0]) / f'model_{model_name}{step:07d}.pt') | |
else: | |
resume_ckpt_path = '' | |
step = 0 | |
return resume_ckpt_path, step | |
def find_ema_checkpoint(main_checkpoint, step, rate, model_name=''): | |
if main_checkpoint is None: | |
return None | |
if model_name == '': | |
filename = f"ema_{rate}_{(step):07d}.pt" | |
else: | |
filename = f"ema_{model_name}_{rate}_{(step):07d}.pt" | |
path = bf.join(bf.dirname(main_checkpoint), filename) | |
# print(path) | |
# st() | |
if bf.exists(path): | |
print('fine ema model', path) | |
return path | |
else: | |
print('fail to find ema model', path) | |
return None | |
def log_loss_dict(diffusion, ts, losses): | |
for key, values in losses.items(): | |
logger.logkv_mean(key, values.mean().item()) | |
# Log the quantiles (four quartiles, in particular). | |
for sub_t, sub_loss in zip(ts.cpu().numpy(), | |
values.detach().cpu().numpy()): | |
quartile = int(4 * sub_t / diffusion.num_timesteps) | |
logger.logkv_mean(f"{key}_q{quartile}", sub_loss) | |
def log_rec3d_loss_dict(loss_dict): | |
for key, values in loss_dict.items(): | |
try: | |
logger.logkv_mean(key, values.mean().item()) | |
except: | |
print('type error:', key) | |
def calc_average_loss(all_loss_dicts, verbose=True): | |
all_scores = {} # todo, defaultdict | |
mean_all_scores = {} | |
for loss_dict in all_loss_dicts: | |
for k, v in loss_dict.items(): | |
v = v.item() | |
if k not in all_scores: | |
# all_scores[f'{k}_val'] = [v] | |
all_scores[k] = [v] | |
else: | |
all_scores[k].append(v) | |
for k, v in all_scores.items(): | |
mean = np.mean(v) | |
std = np.std(v) | |
if k in ['loss_lpis', 'loss_ssim']: | |
mean = 1 - mean | |
result_str = '{} average loss is {:.4f} +- {:.4f}'.format(k, mean, std) | |
mean_all_scores[k] = mean | |
if verbose: | |
print(result_str) | |
val_scores_for_logging = { | |
f'{k}_val': v | |
for k, v in mean_all_scores.items() | |
} | |
return val_scores_for_logging |