import os import gradio as gr import whisper import requests import tempfile from neon_tts_plugin_coqui import CoquiTTS # Whisper: Speech-to-text model = whisper.load_model("base") # LLM : Bloom as inference API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" HF_TOKEN = os.environ["HF_TOKEN"] headers = {"Authorization": f"Bearer {HF_TOKEN}"} #Language covered in Bloom : en, fr, esp, arb, hn, portu, Indonesian, Vietnamese, Chinese, tamil, telugu, bengali # Text-to-Speech LANGUAGES = list(CoquiTTS.langs.keys()) print(f"Languages for Coqui are: {LANGUAGES}") #Languages for Coqui are: ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'el', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga'] coquiTTS = CoquiTTS() # Driver function def driver_fun(audio) : text1, lang = whisper_stt(audio) #text1 = model.transcribe(audio)["text"] text2 = lang_model_response(text1, lang) speech = tts(text2, lang) #'en') return text1, text2, speech # Whisper - speeech-to-text def whisper_stt(audio): print("Inside Whisper TTS") # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) lang = max(probs, key=probs.get) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options = whisper.DecodingOptions(fp16 = False, language=lang) result = whisper.decode(model, mel, options) # print the recognized text print(f"transcript is : {result.text}") return result.text, lang # LLM - Bloom Response def lang_model_response(prompt, language): print(f"*****Inside lang_model_response - Prompt is :{prompt}") p = """Question: How are you doing today? Answer: I am doing good, thanks. Question: """ if len(prompt) == 0: prompt = """Question: Can you help me please? Answer: Sure, I am here for you. Question: """ prompt = p + prompt + "\n" + "Answer: " json_ = {"inputs": prompt, "parameters": { "top_p": 0.90, #0.90 default "max_new_tokens": 64, "temperature": 1.1, #1.1 default "return_full_text": False, "do_sample": True, }, "options": {"use_cache": True, "wait_for_model": True, },} response = requests.post(API_URL, headers=headers, json=json_) #print(f"Response is : {response}") output = response.json() output_tmp = output[0]['generated_text'] print(f"Bloom API Response is : {output_tmp}") solution = output_tmp.split("Answer: ")[2].split("\n")[0] print(f"Final Bloom Response after splits is: {solution}") return solution # Coqui - Text-to-Speech def tts(text, language): print(f"Inside tts - language is : {language}") coqui_langs = ['en' ,'es' ,'fr' ,'de' ,'pl' ,'uk' ,'ro' ,'hu' ,'bg' ,'nl' ,'fi' ,'sl' ,'lv' ,'ga'] if language not in coqui_langs: language = 'en' with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: coquiTTS.get_tts(text, fp, speaker = {"language" : language}) return fp.name gr.Interface( title = 'Testing Whisper', fn=driver_fun, inputs=[ gr.Audio(source="microphone", type="filepath"), #streaming = True, # "state" ], outputs=[ "textbox", "textbox", "audio", ], live=True).launch()