import os os.system("pip install git+https://github.com/openai/whisper.git") os.system("pip install neon-tts-plugin-coqui==0.6.0") import gradio as gr import whisper import requests import tempfile from neon_tts_plugin_coqui import CoquiTTS from datasets import load_dataset import random dataset = load_dataset("ysharma/short_jokes", split="train") # Model 2: Sentence Transformer API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/msmarco-distilbert-base-tas-b" HF_TOKEN = os.environ["HF_TOKEN"] headers = {"Authorization": f"Bearer {HF_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() # Language common in both the multilingual models - English, Chinese, Spanish, and French etc # Model 1: Whisper: Speech-to-text model = whisper.load_model("base") #model_med = whisper.load_model("medium") # Languages covered in Whisper - (exhaustive list) : #"en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", #"ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", #"pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", #"it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", #"iw": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", #"ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", #"th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", #"la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", #"te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", #"az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", #"mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", #"ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", #"sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", #"km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", #"oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", #"gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", #"fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", #"mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", #"tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", #"ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", #Model 2: Text-to-Speech LANGUAGES = list(CoquiTTS.langs.keys()) coquiTTS = CoquiTTS() print(f"Languages for Coqui are: {LANGUAGES}") #Languages for Coqui are: ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'el', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga'] # en - English, es - Spanish, fr - French, de - German, pl - Polish # uk - Ukrainian, ro - Romanian, hu - Hungarian, el - Greek, bg - Bulgarian, # nl - dutch, fi - finnish, sl - slovenian, lv - latvian, ga - ?? # Driver function def driver_fun(audio) : translation, lang = whisper_stt(audio) # older : transcribe, translation, lang #text1 = model.transcribe(audio)["text"] random_val = random.randrange(0,231657) if random_val < 226657: lower_limit = random_val upper_limit = random_val + 5000 else: lower_limit = random_val - 5000 upper_limit = random_val print(f"lower_limit : upper_limit = {lower_limit} : {upper_limit}") dataset_subset = dataset['Joke'][lower_limit : upper_limit] data = query({"inputs": {"source_sentence": "That is a happy person","sentences": dataset_subset} } ) if 'error' in data: return 'Error in model inference - Run Again Please', 'Error in model inference - Run Again Please', None print(f"type(data) : {type(data)}") print(f"data : {data} ") max_match_score = max(data) indx_score = data.index(max_match_score) joke = dataset_subset[indx_score] print(f"Joke is : {joke}") speech = tts(joke, 'en') #'en' # translation return translation, joke, speech #transcribe, # Whisper - speech-to-text def whisper_stt(audio): print("Inside Whisper TTS") # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) lang = max(probs, key=probs.get) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio #options_transc = whisper.DecodingOptions(fp16 = False, language=lang, task='transcribe') #lang options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') #lang #result_transc = whisper.decode(model_med, mel, options_transc) result_transl = whisper.decode(model, mel, options_transl) #model_med # print the recognized text #print(f"transcript is : {result_transc.text}") print(f"translation is : {result_transl.text}") return result_transl.text, lang #result_transc.text, # Coqui - Text-to-Speech def tts(text, language): print(f"Inside tts - language is : {language}") #coqui_langs = ['en' ,'es' ,'fr' ,'de' ,'pl' ,'uk' ,'ro' ,'hu' ,'bg' ,'nl' ,'fi' ,'sl' ,'lv' ,'ga'] #if language not in coqui_langs: # language = 'en' print(f"Text is : {text}") with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: coquiTTS.get_tts(text, fp, speaker = {"language" : language}) return fp.name demo = gr.Blocks() with demo: gr.Markdown("