from diffusers import StableDiffusionPipeline from lora_diffusion import monkeypatch_lora, tune_lora_scale import torch import os import gradio as gr import subprocess MODEL_NAME="stabilityai/stable-diffusion-2-1-base" INSTANCE_DIR="./data_example" OUTPUT_DIR="./output_example" model_id = "stabilityai/stable-diffusion-2-1-base" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") #prompt = "style of sks, baby lion" torch.manual_seed(1) #image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need #image # nice. diffusers are cool. #no need #finetuned_lora_weights = "./lora_weight.pt" #global var counter = 0 #Getting Lora fine-tuned weights def monkeypatching(alpha, in_prompt): #, prompt, pipe): finetuned_lora_weights print("****** inside monkeypatching *******") print(f"in_prompt is - {str(in_prompt)}") global counter if counter == 0 : monkeypatch_lora(pipe.unet, torch.load("./output_example/lora_weight.pt")) #finetuned_lora_weights tune_lora_scale(pipe.unet, alpha) #1.00) counter +=1 else : tune_lora_scale(pipe.unet, alpha) #1.00) prompt = "style of hclu, " + str(in_prompt) #"baby lion" image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0] image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg") return image def accelerate_train_lora(steps): print("*********** inside accelerate_train_lora ***********") #subprocess.run(accelerate launch {"./train_lora_dreambooth.py"} \ #subprocess.Popen(f'accelerate launch {"./train_lora_dreambooth.py"} \ os.system( f'accelerate launch {"./train_lora_dreambooth.py"} \ --pretrained_model_name_or_path={MODEL_NAME} \ --instance_data_dir={INSTANCE_DIR} \ --output_dir={OUTPUT_DIR} \ --instance_prompt="style of hclu" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-4 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps={int(steps)}') #,shell=True) #30000 print("*********** completing accelerate_train_lora ***********") return "./output_example/lora_weight.pt" with gr.Blocks() as demo: gr.Markdown("""