import gradio as gr import os import spaces from transformers import GemmaTokenizer, AutoModelForCausalLM # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) # Load the tokenizer and model tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b-it") model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b-it").to("cuda:0") def codegemma(message: str, history: list, temperature: float, max_new_tokens: int) -> str: """ Generate a response using the CodeGemma model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ input_ids = tokenizer(message, return_tensors="pt") outputs = model.generate( **input_ids, temperature=temperature, max_new_tokens=max_new_tokens, ) response = tokenizer.decode(outputs[0]) return response placeholder = """ CodeGemma-7B-IT """ # Gradio block with gr.Blocks(fill_height=True) as demo: gr.Markdown("# GEMMA-7b-IT") #with gr.Tab('CodeGemma Chatbot'): gr.ChatInterface(codegemma, examples=[["Write a Python function to calculate the nth fibonacci number."]], fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(0, 1, 0.95, label="Temperature", render=False), gr.Slider(128, 4096, 512, label="Max new tokens", render=False ), ], ) if __name__ == "__main__": demo.launch(debug=False)