import gradio as gr import os import openai import gradio as gr from gradio import ChatInterface import time # Get the value of the openai_api_key from environment variable openai.api_key = os.getenv("OPENAI_API_KEY") # Import things that are needed generically from langchain from langchain import LLMMathChain, SerpAPIWrapper from langchain.agents import AgentType, initialize_agent, load_tools from langchain.chat_models import ChatOpenAI from langchain.tools import BaseTool, StructuredTool, Tool, tool from langchain.tools import MoveFileTool, format_tool_to_openai_function from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) from langchain.utilities import WikipediaAPIWrapper from langchain.tools import AIPluginTool # Question- how can one set up a system message for their Chatbot while using ChatInterface # Example system message : system = SystemMessage(content = "You are a helpful AI assistant") # driver def predict_langchain(user_input, chatbot): print(f"Chatbot : {chatbot}") chat = ChatOpenAI(temperature=1.0, streaming=True, model='gpt-3.5-turbo-0613') messages=[] for conv in chatbot: human = HumanMessage(content=conv[0]) ai = AIMessage(content=conv[1]) messages.append(human) messages.append(ai) messages.append(HumanMessage(content=user_input)) # getting gpt3.5's response gpt_response = chat(messages) return gpt_response.content def predict(inputs, chatbot): print(f"Chatbot : {chatbot}") messages = [] for conv in chatbot: user = conv[0] messages.append({"role": "user", "content":user }) if conv[1] is None: break assistant = conv[1] messages.append({"role": "assistant", "content":assistant}) # a ChatCompletion request response = openai.ChatCompletion.create( model='gpt-3.5-turbo', messages= messages, # example : [{'role': 'user', 'content': "What is life? Answer in three words."}], temperature=1.0, stream=True # for streaming the output to chatbot ) partial_message = "" for chunk in response: if len(chunk['choices'][0]['delta']) != 0: print(chunk['choices'][0]['delta']['content']) partial_message = partial_message + chunk['choices'][0]['delta']['content'] yield partial_message #ChatInterface(predict, delete_last_btn="❌Delete").queue().launch(debug=True) gr.ChatInterface(predict, delete_last_btn="del").queue().launch(share=False, debug=True) #examples=["How are you?", "What's up?"],