import gradio as gr import os import json import requests #Streaming endpoint API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream" #Open AI Key OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") def predict(inputs, top_p, temperature, openai_api_key, history=[]): payload = { "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": f"{inputs}"}], "temperature" : temperature, #1.0, "top_p": top_p, #1.0, "n" : 1, "stream": True, "presence_penalty":0, "frequency_penalty":0, } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } history.append(inputs) # make a POST request to the API endpoint using the requests.post method, passing in stream=True response = requests.post(API_URL, headers=headers, json=payload, stream=True) #response = requests.post(API_URL, headers=headers, json=payload, stream=True) token_counter = 0 partial_words = "" counter=0 for chunk in response.iter_lines(): if counter == 0: counter+=1 continue counter+=1 # check whether each line is non-empty if chunk : # decode each line as response data is in bytes if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: break #print(json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]) partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"] if token_counter == 0: history.append(" " + partial_words) else: history[-1] = partial_words chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list token_counter+=1 yield chat, history # resembles {chatbot: chat, state: history} def reset_textbox(): return gr.update(value='') title = """

🔥ChatGPT API 🚀Streaming🚀

""" description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: ``` User: Assistant: User: Assistant: ... ``` In this app, you can explore the outputs of a 20B large language model. """ #Duplicate SpaceDuplicate Space with GPU Upgrade for fast Inference & no queue
with gr.Blocks(css = """#col_container {width: 700px; margin-left: auto; margin-right: auto;} #chatbot {height: 400px; overflow: auto;}""") as demo: gr.HTML(title) gr.HTML() gr.HTML('''
Duplicate SpaceDuplicate the Space and run securely with your OpenAI API Key
''') with gr.Column(elem_id = "col_container"): openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here") chatbot = gr.Chatbot(elem_id='chatbot') #c inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t state = gr.State([]) #s b1 = gr.Button() #inputs, top_p, temperature, top_k, repetition_penalty with gr.Accordion("Parameters", open=False): top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",) #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", ) inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],) b1.click( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],) b1.click(reset_textbox, [], [inputs]) inputs.submit(reset_textbox, [], [inputs]) #gr.Markdown(description) demo.queue().launch(debug=True)