import PIL.Image
import PIL.ImageOps
import gradio as gr
import numpy as np
import tensorflow as tf
from poser import draw_bones, movenet
def predict(image: PIL.Image):
input_size = 256
size = (1280, 1280)
image = PIL.ImageOps.fit(image, size, PIL.Image.LANCZOS)
# image = PIL.ImageOps.contain(image, size)
image_tf = tf.keras.preprocessing.image.img_to_array(image)
# Resize and pad the image to keep the aspect ratio and fit the expected size.
input_image = tf.expand_dims(image_tf, axis=0)
input_image = tf.image.resize_with_pad(input_image, input_size, input_size)
keypoints = movenet(input_image)
keypoints = np.array(keypoints)
image = tf.keras.preprocessing.image.array_to_img(image_tf)
joints = draw_bones(image, keypoints)
points = [f"{x}#{y}" for p, x, y in joints]
return image, joints, points
footer = r"""
Demo for MoveNet
"""
with gr.Blocks(title="MoveNet") as app:
gr.HTML("Human Pose Estimation with MoveNet
")
gr.HTML("MoveNet: Ultra fast and accurate pose detection model
")
with gr.Row().style(equal_height=False):
with gr.Column():
input_img = gr.Image(type="pil", label="Input image")
run_btn = gr.Button(variant="primary")
with gr.Column():
output_img = gr.Image(type="numpy", label="Output image")
with gr.Accordion("See Positions", open=False):
positions = gr.Dataframe(
interactive=True,
headers=["x", "y", "label"],
datatype=["str", "number", "number"],
row_count=16,
col_count=(3, "fixed"),
)
data = gr.Textbox(label="Positions", lines=17)
gr.ClearButton(components=[input_img, output_img, positions, data], variant="stop")
run_btn.click(predict, [input_img], [output_img, positions, data])
with gr.Row():
blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
examples = gr.Dataset(components=[input_img], samples=blobs)
examples.click(lambda x: x[0], [examples], [input_img])
with gr.Row():
gr.HTML(footer)
app.launch(share=True, debug=True, show_error=True)
app.queue()