import torch import torch.nn.functional as F from torchcomp import compexp_gain, db2amp from torchlpc import sample_wise_lpc from typing import List, Tuple, Union, Any, Optional import math def inv_22(a, b, c, d): return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c) def eig_22(a, b, c, d): # https://croninprojects.org/Vince/Geodesy/FindingEigenvectors.pdf T = a + d D = a * d - b * c half_T = T * 0.5 root = torch.sqrt(half_T * half_T - D) # + 0j) L = torch.stack([half_T + root, half_T - root]) y = (L - a) / b # y = c / L V = torch.stack([torch.ones_like(y), y]) return L, V / V.abs().square().sum(0).sqrt() def fir(x, b): padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0)) return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape) def allpole(x: torch.Tensor, a: torch.Tensor): h = x.reshape(-1, x.shape[-1]) return sample_wise_lpc( h, a.broadcast_to(h.shape + a.shape), ).reshape(*x.shape) def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2): b0 = b0 / a0 b1 = b1 / a0 b2 = b2 / a0 a1 = a1 / a0 a2 = a2 / a0 beta1 = b1 - b0 * a1 beta2 = b2 - b0 * a2 tmp = a1.square() - 4 * a2 if tmp < 0: pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp)) u = -1j * x[..., :-1] h = sample_wise_lpc( u.reshape(-1, u.shape[-1]), -pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1), ).reshape(*u.shape) h = ( h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag) - beta1 * h.imag ) else: L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1)) inv_V = inv_22(*V.view(-1)) C = torch.stack([beta1, beta2]) @ V # project input to eigen space h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1] L = L.unsqueeze(-1).broadcast_to(h.shape) h = ( sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1)) .reshape(*h.shape) .transpose(-2, -1) ) @ C tmp = b0 * x y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1) return y def highpass_biquad_coef( sample_rate: int, cutoff_freq: torch.Tensor, Q: torch.Tensor, ): w0 = 2 * torch.pi * cutoff_freq / sample_rate alpha = torch.sin(w0) / 2.0 / Q b0 = (1 + torch.cos(w0)) / 2 b1 = -1 - torch.cos(w0) b2 = b0 a0 = 1 + alpha a1 = -2 * torch.cos(w0) a2 = 1 - alpha return b0, b1, b2, a0, a1, a2 def apply_biquad(bq): return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs)) highpass_biquad = apply_biquad(highpass_biquad_coef) def lowpass_biquad_coef( sample_rate: int, cutoff_freq: torch.Tensor, Q: torch.Tensor, ): w0 = 2 * torch.pi * cutoff_freq / sample_rate alpha = torch.sin(w0) / 2 / Q b0 = (1 - torch.cos(w0)) / 2 b1 = 1 - torch.cos(w0) b2 = b0 a0 = 1 + alpha a1 = -2 * torch.cos(w0) a2 = 1 - alpha return b0, b1, b2, a0, a1, a2 def equalizer_biquad_coef( sample_rate: int, center_freq: torch.Tensor, gain: torch.Tensor, Q: torch.Tensor, ): w0 = 2 * torch.pi * center_freq / sample_rate A = torch.exp(gain / 40.0 * math.log(10)) alpha = torch.sin(w0) / 2 / Q b0 = 1 + alpha * A b1 = -2 * torch.cos(w0) b2 = 1 - alpha * A a0 = 1 + alpha / A a1 = -2 * torch.cos(w0) a2 = 1 - alpha / A return b0, b1, b2, a0, a1, a2 def lowshelf_biquad_coef( sample_rate: int, cutoff_freq: torch.Tensor, gain: torch.Tensor, Q: torch.Tensor, ): w0 = 2 * torch.pi * cutoff_freq / sample_rate A = torch.exp(gain / 40.0 * math.log(10)) alpha = torch.sin(w0) / 2 / Q cosw0 = torch.cos(w0) sqrtA = torch.sqrt(A) b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA) b1 = 2 * A * (A - 1 - (A + 1) * cosw0) b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA) a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA a1 = -2 * (A - 1 + (A + 1) * cosw0) a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA return b0, b1, b2, a0, a1, a2 def highshelf_biquad_coef( sample_rate: int, cutoff_freq: torch.Tensor, gain: torch.Tensor, Q: torch.Tensor, ): w0 = 2 * torch.pi * cutoff_freq / sample_rate A = torch.exp(gain / 40.0 * math.log(10)) alpha = torch.sin(w0) / 2 / Q cosw0 = torch.cos(w0) sqrtA = torch.sqrt(A) b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA) b1 = -2 * A * (A - 1 + (A + 1) * cosw0) b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA) a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA a1 = 2 * (A - 1 - (A + 1) * cosw0) a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA return b0, b1, b2, a0, a1, a2 highpass_biquad = apply_biquad(highpass_biquad_coef) lowpass_biquad = apply_biquad(lowpass_biquad_coef) highshelf_biquad = apply_biquad(highshelf_biquad_coef) lowshelf_biquad = apply_biquad(lowshelf_biquad_coef) equalizer_biquad = apply_biquad(equalizer_biquad_coef) def avg(rms: torch.Tensor, avg_coef: torch.Tensor): assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1) h = rms * avg_coef return sample_wise_lpc( h, (avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1), ) def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor: return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt() def compressor_expander( x: torch.Tensor, avg_coef: Union[torch.Tensor, float], cmp_th: Union[torch.Tensor, float], cmp_ratio: Union[torch.Tensor, float], exp_th: Union[torch.Tensor, float], exp_ratio: Union[torch.Tensor, float], at: Union[torch.Tensor, float], rt: Union[torch.Tensor, float], make_up: torch.Tensor, lookahead_func=lambda x: x, ): rms = avg_rms(x, avg_coef=avg_coef) gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt) gain = lookahead_func(gain) return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1)