import numpy as np from numba import njit, prange from scipy.signal import firwin2 import torch from .fx import Delay, FDN, module2coeffs @njit def rt_fdn( x: np.ndarray, delay_steps: np.ndarray, firs: np.ndarray, U: np.ndarray, ): _, T = x.shape M = delay_steps.shape[0] order = firs.shape[1] y = np.zeros_like(x) buf_size = delay_steps.max() + order delay_buf = np.zeros((M, buf_size), dtype=x.dtype) read_pointer = 0 for t in range(T): # out = delay_buf[(range(M), read_pointers)] # for i in prange(M): # out[i] = delay_buf[i, read_pointers[i]] out = delay_buf[:, read_pointer] y[:, t] = out s = out * firs[:, 0] # indexes = (read_pointers[:, None] - np.arange(1, order)) % buf_sizes[:, None] # reg = np.take_along_axis(delay_buf, indexes, axis=1) # s += firs[:, 1:] @ reg.T # for j in prange(M): # s[j] += firs[j, 1:] @ delay_buf[j, indexes[j]] for i in prange(M): for j in prange(1, order): s[i] += firs[i, j] * delay_buf[i, (read_pointer - j) % buf_size] # for i in prange(1, order): # s += firs[:, i] * delay_buf[:, (read_pointer - i) % buf_size] feedback = U @ s + x[:, t] w_pointers = (read_pointer + delay_steps) % buf_size # delay_buf[(range(M), w_pointers)] = s + B @ x[:, t] for i in prange(M): delay_buf[i, w_pointers[i]] = feedback[i] read_pointer = (read_pointer + 1) % buf_size return y @njit def rt_delay( x: np.ndarray, delay_step: int, b0: float, b1: float, b2: float, a1: float, a2: float, ): T = x.shape[0] y = np.zeros((2, T), dtype=x.dtype) buf_size = delay_step + 1 read_pointer = 0 delay_buf = np.zeros((2, buf_size), dtype=x.dtype) bq_buf = np.zeros((2, 2), dtype=x.dtype) for t in range(T): out = delay_buf[:, read_pointer] y[:, t] = out s = bq_buf[:, 0] + b0 * out bq_buf[:, 0] = bq_buf[:, 1] + b1 * out - a1 * s bq_buf[:, 1] = b2 * out - a2 * s w_pointer = (read_pointer + delay_step) % buf_size # cross feeding because of ping-pong delay delay_buf[0, w_pointer] = s[1] + x[t] delay_buf[1, w_pointer] = s[0] read_pointer = (read_pointer + 1) % buf_size return y class RealTimeDelay(Delay): def forward(self, x): assert x.size(1) == 1, x.size() assert x.size(0) == 1, x.size() with torch.no_grad(): delay_in_samples = round(self.sr * self.params.delay.item() * 0.001) feedback = self.params.feedback.item() if self.recursive_eq and self.eq is not None: b0, b1, b2, a0, a1, a2 = [p.item() for p in module2coeffs(self.eq)] b0, b1, b2, a1, a2 = b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0 else: b0, b1, b2, a1, a2 = 1.0, 0.0, 0.0, 0.0, 0.0 b0 = b0 * feedback b1 = b1 * feedback b2 = b2 * feedback x_numpy = x.squeeze().cpu().numpy() y_numpy = rt_delay(x_numpy, delay_in_samples, b0, b1, b2, a1, a2) y = torch.from_numpy(y_numpy).unsqueeze(0).to(x.device) * self.params.gain return self.odd_pan(y[:, :1]) + self.even_pan(y[:, 1:]) class RealTimeFDN(FDN): def forward(self, x): assert x.size(1) == 2, x.size() assert x.size(0) == 1, x.size() with torch.no_grad(): delays = self.delays if hasattr(self, "delays") else self.params.delays c = self.params.c b = self.params.b gamma = self.params.gamma.clone() if gamma.size(1) == 1: gamma = gamma ** (delays / delays.min()) freqs = np.linspace(0, 1, gamma.size(0)) firs = np.apply_along_axis( lambda x: firwin2(gamma.size(0) * 2 - 1, freqs, x, fs=2), 1, gamma.cpu().numpy().T, ).astype(np.float32) shifted_delays = delays - firs.shape[1] // 2 U = self.params.U x = b @ x.squeeze() y_numpy = rt_fdn( x.cpu().numpy(), # delays.cpu().numpy(), shifted_delays.cpu().numpy(), # firs.cpu().numpy(), firs, U.cpu().numpy(), ) y = c @ torch.from_numpy(y_numpy).to(x.device) y = y.unsqueeze(0) if self.eq is not None: y = self.eq(y) return y