import gradio as gr import numpy as np from scipy.io.wavfile import read import matplotlib.pyplot as plt import torch import math import yaml import json import pyloudnorm as pyln from hydra.utils import instantiate from soxr import resample from functools import partial, reduce from itertools import accumulate from torchcomp import coef2ms, ms2coef from copy import deepcopy from modules.utils import vec2statedict, get_chunks from modules.fx import clip_delay_eq_Q from plot_utils import get_log_mags_from_eq def chain_functions(*functions): return lambda *initial_args: reduce( lambda xs, f: f(*xs) if isinstance(xs, tuple) else f(xs), functions, initial_args, ) title_md = "# Vocal Effects Generator" description_md = """ This is a demo of the paper [DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions](https://arxiv.org/abs/2504.14735), accepted at DAFx 2025. In this demo, you can upload a raw vocal audio file (in mono) and use our model to apply professional-quality vocal processing by tweaking generated effects settings to enhance your vocals! The effects consist of series of EQ, compressor, delay, and reverb. The generator is a PCA model derived from 365 vocal effects presets fitted with the same effects chain. This interface allows you to control the principal components (PCs) of the generator, randomise them, and render the audio. To give you some idea, we empirically found that the first PC controls the amount of reverb and the second PC controls the amount of brightness. Note that adding these PCs together does not necessarily mean that their effects are additive in the final audio. We found sometimes the effects of least important PCs are more perceptible. Try to play around with the sliders and buttons and see what you can come up with! > **_Note:_** To upload your own audio, click X on the top right corner of the input audio block. """ SLIDER_MAX = 3 SLIDER_MIN = -3 NUMBER_OF_PCS = 4 TEMPERATURE = 0.7 CONFIG_PATH = "presets/rt_config.yaml" PCA_PARAM_FILE = "presets/internal/gaussian.npz" INFO_PATH = "presets/internal/info.json" MASK_PATH = "presets/internal/feature_mask.npy" PRESET_PATH = "presets/internal/raw_params.npy" TRAIN_INDEX_PATH = "presets/internal/train_index.npy" EXAMPLE_PATH = "eleanor_erased.wav" with open(CONFIG_PATH) as fp: fx_config = yaml.safe_load(fp)["model"] # Global effect global_fx = instantiate(fx_config) global_fx.eval() raw_params = torch.from_numpy(np.load(PRESET_PATH)) train_index = torch.from_numpy(np.load(TRAIN_INDEX_PATH)) feature_mask = torch.from_numpy(np.load(MASK_PATH)) presets = raw_params[train_index][:, feature_mask].contiguous() pca_params = np.load(PCA_PARAM_FILE) mean = pca_params["mean"] cov = pca_params["cov"] eigvals, eigvecs = np.linalg.eigh(cov) eigvals = np.flip(eigvals, axis=0) eigvecs = np.flip(eigvecs, axis=1) eigsqrt = torch.from_numpy(eigvals.copy()).float().sqrt() U = torch.from_numpy(eigvecs.copy()).float() mean = torch.from_numpy(mean).float() # Global latent variable # z = torch.zeros_like(mean) with open(INFO_PATH) as f: info = json.load(f) param_keys = info["params_keys"] original_shapes = list( map(lambda lst: lst if len(lst) else [1], info["params_original_shapes"]) ) *vec2dict_args, _ = get_chunks(param_keys, original_shapes) vec2dict_args = [param_keys, original_shapes] + vec2dict_args vec2dict = partial( vec2statedict, **dict( zip( [ "keys", "original_shapes", "selected_chunks", "position", "U_matrix_shape", ], vec2dict_args, ) ), ) global_fx.load_state_dict(vec2dict(mean), strict=False) meter = pyln.Meter(44100) @torch.no_grad() def z2x(z): # close all figures to avoid too many open figures plt.close("all") x = U @ (z * eigsqrt) + mean # # print(z) # fx.load_state_dict(vec2dict(x), strict=False) # fx.apply(partial(clip_delay_eq_Q, Q=0.707)) return x @torch.no_grad() def fx2x(fx): plt.close("all") state_dict = fx.state_dict() flattened = torch.cat([state_dict[k].flatten() for k in param_keys]) x = flattened[feature_mask] return x @torch.no_grad() def x2z(x): z = U.T @ (x - mean) return z / eigsqrt @torch.no_grad() def inference(audio, ratio, fx): sr, y = audio if sr != 44100: y = resample(y, sr, 44100) if y.dtype.kind != "f": y = y / 32768.0 if y.ndim == 1: y = y[:, None] loudness = meter.integrated_loudness(y) y = pyln.normalize.loudness(y, loudness, -18.0) y = torch.from_numpy(y).float().T.unsqueeze(0) if y.shape[1] != 1: y = y.mean(dim=1, keepdim=True) direct, wet = fx(y) direct = direct.squeeze(0).T.numpy() wet = wet.squeeze(0).T.numpy() angle = ratio * math.pi * 0.5 test_clipping = direct + wet # rendered = fx(y).squeeze(0).T.numpy() if np.max(np.abs(test_clipping)) > 1: scaler = np.max(np.abs(test_clipping)) # rendered = rendered / scaler direct = direct / scaler wet = wet / scaler rendered = math.sqrt(2) * (math.cos(angle) * direct + math.sin(angle) * wet) return ( (44100, (rendered * 32768).astype(np.int16)), (44100, (direct * 32768).astype(np.int16)), ( 44100, (wet * 32768).astype(np.int16), ), ) def get_important_pcs(n=10, **kwargs): sliders = [ gr.Slider(minimum=SLIDER_MIN, maximum=SLIDER_MAX, label=f"PC {i}", **kwargs) for i in range(1, n + 1) ] return sliders def model2json(fx): fx_names = ["PK1", "PK2", "LS", "HS", "LP", "HP", "DRC"] results = {k: v.toJSON() for k, v in zip(fx_names, fx)} | { "Panner": fx[7].pan.toJSON() } spatial_fx = { "DLY": fx[7].effects[0].toJSON() | {"LP": fx[7].effects[0].eq.toJSON()}, "FDN": fx[7].effects[1].toJSON() | { "Tone correction PEQ": { k: v.toJSON() for k, v in zip(fx_names[:4], fx[7].effects[1].eq) } }, "Cross Send (dB)": fx[7].params.sends_0.log10().mul(20).item(), } return { "Direct": results, "Sends": spatial_fx, } @torch.no_grad() def plot_eq(fx): fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) w, eq_log_mags = get_log_mags_from_eq(fx[:6]) ax.plot(w, sum(eq_log_mags), color="black", linestyle="-") for i, eq_log_mag in enumerate(eq_log_mags): ax.plot(w, eq_log_mag, "k-", alpha=0.3) ax.fill_between(w, eq_log_mag, 0, facecolor="gray", edgecolor="none", alpha=0.1) ax.set_xlabel("Frequency (Hz)") ax.set_ylabel("Magnitude (dB)") ax.set_xlim(20, 20000) ax.set_ylim(-40, 20) ax.set_xscale("log") ax.grid() return fig @torch.no_grad() def plot_comp(fx): fig, ax = plt.subplots(figsize=(6, 5), constrained_layout=True) comp = fx[6] cmp_th = comp.params.cmp_th.item() exp_th = comp.params.exp_th.item() cmp_ratio = comp.params.cmp_ratio.item() exp_ratio = comp.params.exp_ratio.item() make_up = comp.params.make_up.item() # print(cmp_ratio, cmp_th, exp_ratio, exp_th, make_up) comp_in = np.linspace(-80, 0, 100) comp_curve = np.where( comp_in > cmp_th, comp_in - (comp_in - cmp_th) * (cmp_ratio - 1) / cmp_ratio, comp_in, ) comp_out = ( np.where( comp_curve < exp_th, comp_curve - (exp_th - comp_curve) / exp_ratio, comp_curve, ) + make_up ) ax.plot(comp_in, comp_out, c="black", linestyle="-") ax.plot(comp_in, comp_in, c="r", alpha=0.5) ax.set_xlabel("Input Level (dB)") ax.set_ylabel("Output Level (dB)") ax.set_xlim(-80, 0) ax.set_ylim(-80, 0) ax.grid() return fig @torch.no_grad() def plot_delay(fx): fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) delay = fx[7].effects[0] w, eq_log_mags = get_log_mags_from_eq([delay.eq]) log_gain = delay.params.gain.log10().item() * 20 d = delay.params.delay.item() / 1000 log_mag = sum(eq_log_mags) ax.plot(w, log_mag + log_gain, color="black", linestyle="-") log_feedback = delay.params.feedback.log10().item() * 20 for i in range(1, 10): feedback_log_mag = log_mag * (i + 1) + log_feedback * i + log_gain ax.plot( w, feedback_log_mag, c="black", alpha=max(0, (10 - i * d * 4) / 10), linestyle="-", ) ax.set_xscale("log") ax.set_xlim(20, 20000) ax.set_ylim(-80, 0) ax.set_xlabel("Frequency (Hz)") ax.set_ylabel("Magnitude (dB)") ax.grid() return fig @torch.no_grad() def plot_reverb(fx): fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) fdn = fx[7].effects[1] w, eq_log_mags = get_log_mags_from_eq(fdn.eq) bc = fdn.params.c.norm() * fdn.params.b.norm() log_bc = torch.log10(bc).item() * 20 # eq_log_mags = [x + log_bc / len(eq_log_mags) for x in eq_log_mags] # ax.plot(w, sum(eq_log_mags), color="black", linestyle="-") eq_log_mags = sum(eq_log_mags) + log_bc ax.plot(w, eq_log_mags, color="black", linestyle="-") ax.set_xlabel("Frequency (Hz)") ax.set_ylabel("Magnitude (dB)") ax.set_xlim(20, 20000) ax.set_ylim(-40, 20) ax.set_xscale("log") ax.grid() return fig @torch.no_grad() def plot_t60(fx): fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) fdn = fx[7].effects[1] gamma = fdn.params.gamma.squeeze().numpy() delays = fdn.delays.numpy() w = np.linspace(0, 22050, gamma.size) t60 = -60 / (20 * np.log10(gamma + 1e-10) / np.min(delays)) / 44100 ax.plot(w, t60, color="black", linestyle="-") ax.set_xlabel("Frequency (Hz)") ax.set_ylabel("T60 (s)") ax.set_xlim(20, 20000) ax.set_ylim(0, 9) ax.set_xscale("log") ax.grid() return fig @torch.no_grad() def update_param(m, attr_name, value): match type(getattr(m, attr_name)): case torch.nn.Parameter: getattr(m, attr_name).data.copy_(value) case _: if getattr(m, attr_name).ndim == 0: setattr(m, attr_name, torch.tensor(value)) else: setattr(m, attr_name, torch.tensor([value])) @torch.no_grad() def update_atrt(comp, attr_name, value): setattr(comp, attr_name, ms2coef(torch.tensor(value), 44100)) def vec2fx(x): fx = deepcopy(global_fx) fx.load_state_dict(vec2dict(x), strict=False) fx.apply(partial(clip_delay_eq_Q, Q=0.707)) return fx get_last_attribute = lambda m, attr_name: ( (m, attr_name) if "." not in attr_name else (lambda x, *remain: get_last_attribute(getattr(m, x), ".".join(remain)))( *attr_name.split(".") ) ) with gr.Blocks() as demo: z = gr.State(torch.zeros_like(mean)) fx_params = gr.State(mean) fx = vec2fx(fx_params.value) sr, y = read(EXAMPLE_PATH) default_pc_slider = partial( gr.Slider, minimum=SLIDER_MIN, maximum=SLIDER_MAX, interactive=True, value=0 ) default_audio_block = partial(gr.Audio, type="numpy", loop=True) default_freq_slider = partial(gr.Slider, label="Frequency (Hz)", interactive=True) default_gain_slider = partial(gr.Slider, label="Gain (dB)", interactive=True) default_q_slider = partial(gr.Slider, label="Q", interactive=True) gr.Markdown( title_md, elem_id="title", ) with gr.Row(): gr.Markdown( description_md, elem_id="description", ) gr.Image("diffvox_diagram.png", elem_id="diagram") with gr.Row(): with gr.Column(): audio_input = default_audio_block( sources="upload", label="Input Audio", value=(sr, y) ) with gr.Row(): random_button = gr.Button( f"Randomise PCs", elem_id="randomise-button", ) reset_button = gr.Button( "Reset", elem_id="reset-button", ) render_button = gr.Button( "Run", elem_id="render-button", variant="primary" ) with gr.Row(): s1 = default_pc_slider(label="PC 1") s2 = default_pc_slider(label="PC 2") with gr.Row(): s3 = default_pc_slider(label="PC 3") s4 = default_pc_slider(label="PC 4") sliders = [s1, s2, s3, s4] with gr.Row(): with gr.Column(): extra_pc_dropdown = gr.Dropdown( list(range(NUMBER_OF_PCS + 1, mean.numel() + 1)), label=f"PC > {NUMBER_OF_PCS}", info="Select which extra PC to adjust", interactive=True, ) extra_slider = default_pc_slider(label="Extra PC") preset_dropdown = gr.Dropdown( ["none"] + list(range(1, presets.shape[0] + 1)), value="none", label=f"Select Preset (1-{presets.shape[0]})", info="Select a preset to load (this will override the current settings)", interactive=True, ) with gr.Column(): audio_output = default_audio_block(label="Output Audio", interactive=False) dry_wet_ratio = gr.Slider( minimum=0, maximum=1, value=0.5, label="Dry/Wet Ratio", interactive=True, ) direct_output = default_audio_block(label="Direct Audio", interactive=False) wet_output = default_audio_block(label="Wet Audio", interactive=False) _ = gr.Markdown("## Parametric EQ") peq_plot = gr.Plot(plot_eq(fx), label="PEQ Frequency Response", elem_id="peq-plot") with gr.Row(): with gr.Column(min_width=160): _ = gr.Markdown("High Pass") hp = fx[5] hp_freq = default_freq_slider( minimum=16, maximum=5300, value=hp.params.freq.item() ) hp_q = default_q_slider(minimum=0.5, maximum=10, value=hp.params.Q.item()) with gr.Column(min_width=160): _ = gr.Markdown("Low Shelf") ls = fx[2] ls_freq = default_freq_slider( minimum=30, maximum=200, value=ls.params.freq.item() ) ls_gain = default_gain_slider( minimum=-12, maximum=12, value=ls.params.gain.item() ) with gr.Column(min_width=160): _ = gr.Markdown("Peak filter 1") pk1 = fx[0] pk1_freq = default_freq_slider( minimum=33, maximum=5400, value=pk1.params.freq.item() ) pk1_gain = default_gain_slider( minimum=-12, maximum=12, value=pk1.params.gain.item() ) pk1_q = default_q_slider(minimum=0.2, maximum=20, value=pk1.params.Q.item()) with gr.Column(min_width=160): _ = gr.Markdown("Peak filter 2") pk2 = fx[1] pk2_freq = default_freq_slider( minimum=200, maximum=17500, value=pk2.params.freq.item() ) pk2_gain = default_gain_slider( minimum=-12, maximum=12, value=pk2.params.gain.item() ) pk2_q = default_q_slider(minimum=0.2, maximum=20, value=pk2.params.Q.item()) with gr.Column(min_width=160): _ = gr.Markdown("High Shelf") hs = fx[3] hs_freq = default_freq_slider( minimum=750, maximum=8300, value=hs.params.freq.item() ) hs_gain = default_gain_slider( minimum=-12, maximum=12, value=hs.params.gain.item() ) with gr.Column(min_width=160): _ = gr.Markdown("Low Pass") lp = fx[4] lp_freq = default_freq_slider( minimum=200, maximum=18000, value=lp.params.freq.item() ) lp_q = default_q_slider(minimum=0.5, maximum=10, value=lp.params.Q.item()) _ = gr.Markdown("## Compressor and Expander") with gr.Row(): with gr.Column(): comp = fx[6] cmp_th = gr.Slider( minimum=-60, maximum=0, value=comp.params.cmp_th.item(), interactive=True, label="Threshold (dB)", ) cmp_ratio = gr.Slider( minimum=1, maximum=20, value=comp.params.cmp_ratio.item(), interactive=True, label="Comp. Ratio", ) make_up = gr.Slider( minimum=-12, maximum=12, value=comp.params.make_up.item(), interactive=True, label="Make Up (dB)", ) attack_time = gr.Slider( minimum=0.1, maximum=100, value=coef2ms(comp.params.at, 44100).item(), interactive=True, label="Attack Time (ms)", ) release_time = gr.Slider( minimum=50, maximum=1000, value=coef2ms(comp.params.rt, 44100).item(), interactive=True, label="Release Time (ms)", ) exp_ratio = gr.Slider( minimum=0, maximum=1, value=comp.params.exp_ratio.item(), interactive=True, label="Exp. Ratio", ) exp_th = gr.Slider( minimum=-80, maximum=0, value=comp.params.exp_th.item(), interactive=True, label="Exp. Threshold (dB)", ) avg_coef = gr.Slider( minimum=0, maximum=1, value=comp.params.avg_coef.item(), interactive=True, label="RMS Averaging Coefficient", ) with gr.Column(): comp_plot = gr.Plot( plot_comp(fx), label="Compressor Curve", elem_id="comp-plot" ) _ = gr.Markdown("## Ping-Pong Delay") with gr.Row(): with gr.Column(): delay = fx[7].effects[0] delay_time = gr.Slider( minimum=100, maximum=1000, value=delay.params.delay.item(), interactive=True, label="Delay Time (ms)", ) feedback = gr.Slider( minimum=0, maximum=1, value=delay.params.feedback.item(), interactive=True, label="Feedback", ) delay_gain = gr.Slider( minimum=-80, maximum=0, value=delay.params.gain.log10().item() * 20, interactive=True, label="Gain (dB)", ) odd_pan = gr.Slider( minimum=-100, maximum=100, value=delay.odd_pan.params.pan.item() * 200 - 100, interactive=True, label="Odd Delay Pan", ) even_pan = gr.Slider( minimum=-100, maximum=100, value=delay.even_pan.params.pan.item() * 200 - 100, interactive=True, label="Even Delay Pan", ) delay_lp_freq = gr.Slider( minimum=200, maximum=16000, value=delay.eq.params.freq.item(), interactive=True, label="Low Pass Frequency (Hz)", ) reverb_send = gr.Slider( minimum=-80, maximum=0, value=fx[7].params.sends_0.log10().item() * 20, interactive=True, label="Reverb Send (dB)", ) with gr.Column(): delay_plot = gr.Plot( plot_delay(fx), label="Delay Frequency Response", elem_id="delay-plot" ) _ = gr.Markdown("## FDN Reverb") with gr.Row(): reverb_plot = gr.Plot( plot_reverb(fx), label="Tone Correction PEQ", elem_id="reverb-plot", min_width=160, ) t60_plot = gr.Plot( plot_t60(fx), label="Decay Time", elem_id="t60-plot", min_width=160 ) with gr.Row(): fdn = fx[7].effects[1] tone_correct_peq = fdn.eq with gr.Column(min_width=160): _ = gr.Markdown("Low Shelf") tc_ls = tone_correct_peq[2] tc_ls_freq = default_freq_slider( minimum=30, maximum=450, value=tc_ls.params.freq.item() ) tc_ls_gain = default_gain_slider( minimum=-12, maximum=12, value=tc_ls.params.gain.item() ) with gr.Column(min_width=160): _ = gr.Markdown("Peak filter 1") tc_pk1 = tone_correct_peq[0] tc_pk1_freq = default_freq_slider( minimum=200, maximum=2500, value=tc_pk1.params.freq.item() ) tc_pk1_gain = default_gain_slider( minimum=-12, maximum=12, value=tc_pk1.params.gain.item() ) tc_pk1_q = default_q_slider( minimum=0.1, maximum=3, value=tc_pk1.params.Q.item() ) with gr.Column(min_width=160): _ = gr.Markdown("Peak filter 2") tc_pk2 = tone_correct_peq[1] tc_pk2_freq = default_freq_slider( minimum=600, maximum=7000, value=tc_pk2.params.freq.item() ) tc_pk2_gain = default_gain_slider( minimum=-12, maximum=12, value=tc_pk2.params.gain.item() ) tc_pk2_q = default_q_slider( minimum=0.1, maximum=3, value=tc_pk2.params.Q.item() ) with gr.Column(min_width=160): _ = gr.Markdown("High Shelf") tc_hs = tone_correct_peq[3] tc_hs_freq = default_freq_slider( minimum=1500, maximum=16000, value=tc_hs.params.freq.item() ) tc_hs_gain = default_gain_slider( minimum=-12, maximum=12, value=tc_hs.params.gain.item() ) with gr.Row(): json_output = gr.JSON( model2json(fx), label="Effect Settings", max_height=800, open=True ) update_pc = lambda z, i: z[:NUMBER_OF_PCS].tolist() + [z[i - 1].item()] update_pc_outputs = sliders + [extra_slider] peq_sliders = [ pk1_freq, pk1_gain, pk1_q, pk2_freq, pk2_gain, pk2_q, ls_freq, ls_gain, hs_freq, hs_gain, lp_freq, lp_q, hp_freq, hp_q, ] peq_attr_names = ( ["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 + ["freq", "Q"] * 2 ) peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2 + [4] * 2 + [5] * 2 cmp_sliders = [ cmp_th, cmp_ratio, make_up, exp_ratio, exp_th, avg_coef, attack_time, release_time, ] cmp_update_funcs = [update_param] * 6 + [update_atrt] * 2 cmp_attr_names = [ "cmp_th", "cmp_ratio", "make_up", "exp_ratio", "exp_th", "avg_coef", "at", "rt", ] cmp_update_plot_flag = [True] * 5 + [False] * 3 delay_sliders = [delay_time, feedback, delay_lp_freq, delay_gain, odd_pan, even_pan] delay_update_funcs = ( [update_param] * 3 + [lambda m, a, v: update_param(m, a, 10 ** (v / 20))] + [lambda m, a, v: update_param(m, a, (v + 100) / 200)] * 2 ) delay_attr_names = [ "params.delay", "params.feedback", "eq.params.freq", "params.gain", "odd_pan.params.pan", "even_pan.params.pan", ] delay_update_plot_flag = [True] * 4 + [False] * 2 tc_peq_sliders = [ tc_pk1_freq, tc_pk1_gain, tc_pk1_q, tc_pk2_freq, tc_pk2_gain, tc_pk2_q, tc_ls_freq, tc_ls_gain, tc_hs_freq, tc_hs_gain, ] tc_peq_attr_names = ["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 tc_peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2 all_effect_sliders = ( peq_sliders + cmp_sliders + delay_sliders + tc_peq_sliders + [reverb_send] ) split_sizes = [ len(peq_sliders), len(cmp_sliders), len(delay_sliders), len(tc_peq_sliders), 1, ] split_indexes = list( accumulate(split_sizes, initial=0) ) # [0, len(peq_sliders), len(peq_sliders) + len(cmp_sliders), ...] def assign_fx_params(fx, *args): peq_sliders, cmp_sliders, delay_sliders, tc_peq_sliders = map( lambda i, j: args[i:j], split_indexes[:-2], split_indexes[1:-1] ) reverb_send_slider = args[-1] for idx, s, attr_name in zip(peq_indices, peq_sliders, peq_attr_names): update_param(fx[idx].params, attr_name, s) for f, s, attr_name in zip(cmp_update_funcs, cmp_sliders, cmp_attr_names): f(fx[6].params, attr_name, s) for f, s, attr_name in zip(delay_update_funcs, delay_sliders, delay_attr_names): m, name = get_last_attribute(fx[7].effects[0], attr_name) f(m, name, s) for idx, s, attr_name in zip(tc_peq_indices, tc_peq_sliders, tc_peq_attr_names): update_param(fx[7].effects[1].eq[idx].params, attr_name, s) update_param(fx[7].params, "sends_0", 10 ** (reverb_send_slider / 20)) return fx accum_func_results = lambda init, *fs: reduce( lambda x, f: (f(x[0]), *x), fs, (init,) ) x2z_common_steps = chain_functions( lambda x, *all_s: assign_fx_params(vec2fx(x), *all_s), lambda fx: accum_func_results(fx, fx2x, x2z), ) for s in peq_sliders: s.input( chain_functions( lambda x, i, *args: x2z_common_steps(x, *args) + (i,), lambda z, x, fx, extra_pc_idx: [z, x] + [model2json(fx), plot_eq(fx)] + update_pc(z, extra_pc_idx), ), inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, outputs=[z, fx_params, json_output, peq_plot] + update_pc_outputs, ) for s, update_plot in zip(cmp_sliders, cmp_update_plot_flag): s.input( chain_functions( lambda x, i, *args: x2z_common_steps(x, *args) + (i,), lambda z, x, fx, e_pc_i, update_plot=update_plot: [z, x] + [model2json(fx)] + ([plot_comp(fx)] if update_plot else []) + update_pc(z, e_pc_i), ), inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, outputs=[z, fx_params, json_output] + ([comp_plot] if update_plot else []) + update_pc_outputs, ) for s, update_plot in zip(delay_sliders, delay_update_plot_flag): s.input( chain_functions( lambda x, i, *args: x2z_common_steps(x, *args) + (i,), lambda z, x, fx, e_pc_i, update_plot=update_plot: ( [z, x] + [model2json(fx)] + ([plot_delay(fx)] if update_plot else []) + update_pc(z, e_pc_i) ), ), inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, outputs=[z, fx_params] + [json_output] + ([delay_plot] if update_plot else []) + update_pc_outputs, ) reverb_send.input( chain_functions( lambda x, i, *args: x2z_common_steps(x, *args) + (i,), lambda z, x, fx, e_pc_i: [z, x] + [model2json(fx)] + update_pc(z, e_pc_i), ), inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, outputs=[z, fx_params, json_output] + update_pc_outputs, ) for s in tc_peq_sliders: s.input( chain_functions( lambda x, i, *args: x2z_common_steps(x, *args) + (i,), lambda z, x, fx, e_pc_i: [z, x] + [model2json(fx), plot_reverb(fx)] + update_pc(z, e_pc_i), ), inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, outputs=[z, fx_params, json_output, reverb_plot] + update_pc_outputs, ) render_button.click( chain_functions( lambda audio, ratio, x, *all_s: ( audio, ratio, assign_fx_params(vec2fx(x), *all_s), ), inference, ), inputs=[ audio_input, dry_wet_ratio, fx_params, ] + all_effect_sliders, outputs=[ audio_output, direct_output, wet_output, ], ) update_fx = lambda fx: [ fx[0].params.freq.item(), fx[0].params.gain.item(), fx[0].params.Q.item(), fx[1].params.freq.item(), fx[1].params.gain.item(), fx[1].params.Q.item(), fx[2].params.freq.item(), fx[2].params.gain.item(), fx[3].params.freq.item(), fx[3].params.gain.item(), fx[4].params.freq.item(), fx[4].params.Q.item(), fx[5].params.freq.item(), fx[5].params.Q.item(), fx[6].params.cmp_th.item(), fx[6].params.cmp_ratio.item(), fx[6].params.make_up.item(), fx[6].params.exp_th.item(), fx[6].params.exp_ratio.item(), coef2ms(fx[6].params.at, 44100).item(), coef2ms(fx[6].params.rt, 44100).item(), fx[7].effects[0].params.delay.item(), fx[7].effects[0].params.feedback.item(), fx[7].effects[0].params.gain.log10().item() * 20, fx[7].effects[0].eq.params.freq.item(), fx[7].effects[0].odd_pan.params.pan.item() * 200 - 100, fx[7].effects[0].even_pan.params.pan.item() * 200 - 100, fx[7].params.sends_0.log10().item() * 20, fx[7].effects[1].eq[0].params.freq.item(), fx[7].effects[1].eq[0].params.gain.item(), fx[7].effects[1].eq[0].params.Q.item(), fx[7].effects[1].eq[1].params.freq.item(), fx[7].effects[1].eq[1].params.gain.item(), fx[7].effects[1].eq[1].params.Q.item(), fx[7].effects[1].eq[2].params.freq.item(), fx[7].effects[1].eq[2].params.gain.item(), fx[7].effects[1].eq[3].params.freq.item(), fx[7].effects[1].eq[3].params.gain.item(), ] update_fx_outputs = [ pk1_freq, pk1_gain, pk1_q, pk2_freq, pk2_gain, pk2_q, ls_freq, ls_gain, hs_freq, hs_gain, lp_freq, lp_q, hp_freq, hp_q, cmp_th, cmp_ratio, make_up, exp_th, exp_ratio, attack_time, release_time, delay_time, feedback, delay_gain, delay_lp_freq, odd_pan, even_pan, reverb_send, tc_pk1_freq, tc_pk1_gain, tc_pk1_q, tc_pk2_freq, tc_pk2_gain, tc_pk2_q, tc_ls_freq, tc_ls_gain, tc_hs_freq, tc_hs_gain, ] update_plots = lambda fx: [ plot_eq(fx), plot_comp(fx), plot_delay(fx), plot_reverb(fx), plot_t60(fx), ] update_plots_outputs = [ peq_plot, comp_plot, delay_plot, reverb_plot, t60_plot, ] update_all = ( lambda z, fx, i: update_pc(z, i) + update_fx(fx) + update_plots(fx) + [model2json(fx)] ) update_all_outputs = ( update_pc_outputs + update_fx_outputs + update_plots_outputs + [json_output] ) z2x_common_steps = chain_functions( lambda z: accum_func_results(z, z2x, vec2fx), lambda fx, x, z: (z, x, fx), ) random_button.click( chain_functions( lambda i: ( *z2x_common_steps(torch.randn_like(mean).clip(SLIDER_MIN, SLIDER_MAX)), i, ), lambda z, x, fx, i: [z, x] + update_all(z, fx, i), ), inputs=extra_pc_dropdown, outputs=[z, fx_params] + update_all_outputs, ) reset_button.click( chain_functions( lambda: z2x_common_steps(torch.zeros_like(mean)), lambda z, x, fx: [z, x] + update_all(z, fx, NUMBER_OF_PCS), ), outputs=[z, fx_params] + update_all_outputs, ) def update_z(z, s, i): z[i] = s return z for i, slider in enumerate(sliders): slider.input( chain_functions( lambda z, s, i=i: update_z(z, s, i), z2x_common_steps, lambda z, x, fx: [z, x, model2json(fx)] + update_fx(fx) + update_plots(fx), ), inputs=[z, slider], outputs=[z, fx_params, json_output] + update_fx_outputs + update_plots_outputs, ) extra_slider.input( chain_functions( lambda z, s, i: update_z(z, s, i - 1), z2x_common_steps, lambda z, x, fx: [z, x, model2json(fx)] + update_fx(fx) + update_plots(fx), ), inputs=[z, extra_slider, extra_pc_dropdown], outputs=[z, fx_params, json_output] + update_fx_outputs + update_plots_outputs, ) extra_pc_dropdown.input( lambda z, i: z[i - 1].item(), inputs=[z, extra_pc_dropdown], outputs=extra_slider, ) preset_dropdown.input( chain_functions( lambda i, _: (mean if i == "none" else presets[i - 1], _), lambda x, i: (x2z(x), x, vec2fx(x), i), lambda z, x, fx, i: [z, x] + update_all(z, fx, i), ), inputs=[preset_dropdown, extra_pc_dropdown], outputs=[z, fx_params] + update_all_outputs, ) dry_wet_ratio.input( chain_functions( lambda _, *args: (_, *map(lambda x: x[1] / 32768, args)), lambda ratio, d, w: math.sqrt(2) * ( math.cos(ratio * math.pi * 0.5) * d + math.sin(ratio * math.pi * 0.5) * w ), lambda x: (44100, (x * 32768).astype(np.int16)), ), inputs=[dry_wet_ratio, direct_output, wet_output], outputs=[audio_output], ) demo.launch()