from torchaudio.pipelines import SQUIM_OBJECTIVE import torch import torchaudio model = None def squim_apply(batch, rank=None, audio_column_name="audio"): global model if model is None: model = SQUIM_OBJECTIVE.get_model() if rank is not None: # move the model to the right GPU if not there already device = f"cuda:{(rank or 0)% torch.cuda.device_count()}" # move to device and create pipeline here because the pipeline moves to the first GPU it finds anyway model.to(device) else: device = "cpu" if isinstance(batch[audio_column_name], list): sdr = [] pesq = [] stoi = [] for sample in batch[audio_column_name]: waveform = torchaudio.functional.resample(torch.tensor(sample["array"][None, :]).to(device).float(), sample["sampling_rate"], SQUIM_OBJECTIVE.sample_rate) with torch.no_grad(): stoi_sample, pesq_sample, sdr_sample = model(waveform) sdr.append(sdr_sample.cpu()) pesq.append(pesq_sample.cpu()) stoi.append(stoi_sample.cpu()) batch["sdr"] = sdr batch["pesq"] = pesq batch["stoi"] = stoi else: waveform = torchaudio.functional.resample(torch.tensor(batch[audio_column_name]["array"][None, :]).to(device).float(), batch[audio_column_name]["sampling_rate"], SQUIM_OBJECTIVE.sample_rate) with torch.no_grad(): stoi_sample, pesq_sample, sdr_sample = model(waveform) batch["sdr"] = sdr_sample batch["pesq"] = pesq_sample batch["stoi"] = stoi_sample # TODO return batch