import torch import gradio as gr import yt_dlp as youtube_dl import numpy as np from datasets import Dataset, Audio from scipy.io import wavfile from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import tempfile import os import time MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(inputs_path, task, dataset_name, oauth_token: gr.OAuthToken): if inputs_path is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") sampling_rate, inputs = wavfile.read(inputs_path) out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) text = out["text"] chunks = naive_postprocess_whisper_chunks(out["chunks"]) transcripts = [] audios = [] with tempfile.TemporaryDirectory() as tmpdirname: for i,chunk in enumerate(chunks): begin, end = chunk["timestamp"] begin, end = int(begin*sampling_rate), int(end*sampling_rate) # TODO: make sure 1D or 2D? arr = inputs[begin:end] path = os.path.join(tmpdirname, f"{i}.wav") wavfile.write(path, sampling_rate, arr) audios.append(path) transcripts.append(chunk["text"]) dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio()) dataset.push_to_hub(dataset_name, token=oauth_token) return text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def download_yt_audio(yt_url, filename): info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration_string"] file_h_m_s = file_length.split(":") file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] if len(file_h_m_s) == 1: file_h_m_s.insert(0, 0) if len(file_h_m_s) == 2: file_h_m_s.insert(0, 0) file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except youtube_dl.utils.ExtractorError as err: raise gr.Error(str(err)) def yt_transcribe(yt_url, task, dataset_name, oauth_token: gr.OAuthToken, max_filesize=75.0, dataset_sampling_rate = 24000): html_embed_str = _return_yt_html_embed(yt_url) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: inputs_path = f.read() inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) text = out["text"] chunks = naive_postprocess_whisper_chunks(out["chunks"]) inputs = ffmpeg_read(inputs_path, dataset_sampling_rate) transcripts = [] audios = [] with tempfile.TemporaryDirectory() as tmpdirname: for i,chunk in enumerate(chunks): begin, end = chunk["timestamp"] begin, end = int(begin*dataset_sampling_rate), int(end*dataset_sampling_rate) # TODO: make sure 1D or 2D? arr = inputs[begin:end] path = os.path.join(tmpdirname, f"{i}.wav") wavfile.write(path, dataset_sampling_rate, arr) audios.append(path) transcripts.append(chunk["text"]) dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio()) dataset.push_to_hub(dataset_name, token=oauth_token) return html_embed_str, text def naive_postprocess_whisper_chunks(chunks, stop_chars = ".!:;?", min_duration = 5): new_chunks = [] while chunks: current_chunk = chunks.pop(0) begin, end = current_chunk["timestamp"] text = current_chunk["text"] while chunks and (text[-1] not in stop_chars or (end-begin