import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline from transformers import VitsModel, VitsTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # load text-to-speech checkpoint and speaker embeddings processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) model_mms = VitsModel.from_pretrained("Matthijs/mms-tts-deu").to(device) tokenizer_mms = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "de"}) return outputs["text"] def synthesise(text): inputs = tokenizer_mms(text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model_mms(input_ids) print("mms model", outputs) print(outputs.audio[0]) return outputs.audio[0].cpu() inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) print("speecht5 model", speech) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) # (((speech["audio"].cpu().numpy()) + 1) / 2.)* 32767 print(synthesised_speech) synthesised_speech_numpy = synthesised_speech.numpy() synthesised_speech_numpy += np.min(synthesised_speech_numpy) synthesised_speech_numpy /= np.max(synthesised_speech_numpy) # synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) synthesised_speech = np.clip((synthesised_speech_numpy*32767) .astype(np.int16), 0, 32767) print(synthesised_speech) # synthesised_speech = (((synthesised_speech.numpy() + 1) / 2.0) * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and [Massive Multilingual Speech (MMS) TTS](https://huggingface.co/learn/audio-course/chapter6/pre-trained_models#massive-multilingual-speech-mms) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()