yizhangliu commited on
Commit
98f817f
1 Parent(s): 843d0b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -60
app.py CHANGED
@@ -63,10 +63,6 @@ os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
63
  if os.environ.get("CACHE_DIR"):
64
  os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
65
 
66
- os.environ["TORCH_HOME"] = './'
67
-
68
- BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
69
-
70
  from share_btn import community_icon_html, loading_icon_html, share_js
71
 
72
  HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
@@ -74,60 +70,12 @@ HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
74
  device = "cuda" if torch.cuda.is_available() else "cpu"
75
  print(f'device = {device}')
76
 
77
- def get_image_ext(img_bytes):
78
- w = imghdr.what("", img_bytes)
79
- if w is None:
80
- w = "jpeg"
81
- return w
82
-
83
- def diffuser_callback(i, t, latents):
84
- pass
85
-
86
- def preprocess_image(image):
87
- w, h = image.size
88
- w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
89
- image = image.resize((w, h), resample=PIL.Image.LANCZOS)
90
- image = np.array(image).astype(np.float32) / 255.0
91
- image = image[None].transpose(0, 3, 1, 2)
92
- image = torch.from_numpy(image)
93
- return 2.0 * image - 1.0
94
-
95
- def preprocess_mask(mask):
96
- mask = mask.convert("L")
97
- w, h = mask.size
98
- w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
99
- mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
100
- mask = np.array(mask).astype(np.float32) / 255.0
101
- mask = np.tile(mask, (4, 1, 1))
102
- mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
103
- mask = 1 - mask # repaint white, keep black
104
- mask = torch.from_numpy(mask)
105
- return mask
106
-
107
- def load_img_1_(nparr, gray: bool = False):
108
- # alpha_channel = None
109
- # nparr = np.frombuffer(img_bytes, np.uint8)
110
- if gray:
111
- np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE)
112
- else:
113
- np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
114
- if len(np_img.shape) == 3 and np_img.shape[2] == 4:
115
- alpha_channel = np_img[:, :, -1]
116
- np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB)
117
- else:
118
- np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)
119
-
120
- return np_img, alpha_channel
121
-
122
  model = None
123
 
124
  def model_process(image, mask, alpha_channel, ext):
125
  global model
126
  original_shape = image.shape
127
  interpolation = cv2.INTER_CUBIC
128
-
129
- # image_pil = Image.fromarray(image)
130
- # mask_pil = Image.fromarray(mask).convert("L")
131
 
132
  size_limit = "Original"
133
  print(f'size_limit_2_ = {size_limit}')
@@ -269,15 +217,8 @@ def predict(input):
269
  ext = 'png'
270
 
271
  output = model_process(image, mask, alpha_channel, ext)
272
-
273
- # output = mask #output.images[0]
274
- # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
275
- # output = input["mask"]
276
- # output = None
277
  return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
278
 
279
- print(f'liuyz_500_here_')
280
-
281
  css = '''
282
  .container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
283
  #image_upload{min-height:512px}
@@ -375,7 +316,7 @@ with image_blocks as demo:
375
  full_width=True,
376
  )
377
 
378
- with gr.Column():
379
  image_out = gr.Image(label="Output").style(height=512)
380
  '''
381
  with gr.Group(elem_id="share-btn-container"):
 
63
  if os.environ.get("CACHE_DIR"):
64
  os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
65
 
 
 
 
 
66
  from share_btn import community_icon_html, loading_icon_html, share_js
67
 
68
  HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
 
70
  device = "cuda" if torch.cuda.is_available() else "cpu"
71
  print(f'device = {device}')
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  model = None
74
 
75
  def model_process(image, mask, alpha_channel, ext):
76
  global model
77
  original_shape = image.shape
78
  interpolation = cv2.INTER_CUBIC
 
 
 
79
 
80
  size_limit = "Original"
81
  print(f'size_limit_2_ = {size_limit}')
 
217
  ext = 'png'
218
 
219
  output = model_process(image, mask, alpha_channel, ext)
 
 
 
 
 
220
  return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
221
 
 
 
222
  css = '''
223
  .container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
224
  #image_upload{min-height:512px}
 
316
  full_width=True,
317
  )
318
 
319
+ # with gr.Column():
320
  image_out = gr.Image(label="Output").style(height=512)
321
  '''
322
  with gr.Group(elem_id="share-btn-container"):