File size: 21,743 Bytes
6c85792
c8cb9bb
 
 
 
 
 
 
 
6c85792
 
 
 
 
 
 
 
 
 
 
 
 
45faff1
6c85792
a5ca5a6
a18a2d9
a5ca5a6
 
 
 
 
 
a18a2d9
a5ca5a6
 
 
bba2454
a5ca5a6
 
 
 
 
 
 
774d798
 
a5ca5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344868a
 
a5ca5a6
 
ec107df
6c85792
8d01019
6c85792
 
21fc719
6c85792
8d01019
 
 
 
 
 
a5ca5a6
 
 
bb4525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e2ff1
43859c3
 
 
 
 
 
 
 
 
 
 
 
 
 
bba2454
383d7cb
f73b71e
c8cb9bb
 
f73b71e
c8cb9bb
72b7fc6
 
a0c3f48
72b7fc6
 
 
 
 
50e8fd2
a0c3f48
0e4c0f7
43859c3
21da9c1
7372fa3
bba2454
c8cb9bb
 
039e64f
7372fa3
a0c3f48
f73b71e
 
 
 
 
 
3079cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73b71e
19586cf
 
98baf00
 
19586cf
 
7372fa3
3079cc3
98baf00
f73b71e
3079cc3
65d6992
bba2454
a0c3f48
72b7fc6
7372fa3
039e64f
7372fa3
bba2454
 
 
f73b71e
 
19586cf
039e64f
f73b71e
 
08d22d8
f73b71e
7e3a73d
f73b71e
41164d3
f73b71e
 
 
7e3a73d
f73b71e
 
 
b3c6cb3
811f999
235c943
6efd69c
08d22d8
6efd69c
08d22d8
 
f73b71e
 
19586cf
f73b71e
383d7cb
ea1e63c
98d0e5b
ea1e63c
 
960b239
ea1e63c
 
 
4aefcfd
 
ea1e63c
 
 
383d7cb
 
 
9400c80
 
 
ea1e63c
 
 
 
 
 
 
 
9400c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1e63c
9400c80
ea1e63c
 
 
 
 
 
 
 
 
 
4aefcfd
ea1e63c
960b239
ea1e63c
383d7cb
 
 
ea1e63c
 
383d7cb
 
ea1e63c
 
 
 
383d7cb
ea1e63c
383d7cb
ea1e63c
 
 
383d7cb
ea1e63c
 
 
383d7cb
4aefcfd
 
383d7cb
d69f20a
ea1e63c
d69f20a
ea1e63c
6717f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1e63c
6717f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1e63c
a5ca5a6
 
 
2976d00
8997d74
 
 
 
a5ca5a6
 
60be08d
6c85792
 
 
 
 
 
 
60be08d
6c85792
5534598
6c85792
 
384748d
6c85792
 
 
 
235c943
31e7adc
 
960b239
e20fa2d
 
076742e
960b239
 
6220748
3ae9189
 
290938b
3ae9189
 
 
e20fa2d
383d7cb
6717f64
 
 
 
 
 
 
 
 
383d7cb
6717f64
 
 
 
 
 
 
 
 
 
e20fa2d
19586cf
f73b71e
f4e2d95
383d7cb
bf8d6fe
6c85792
210411f
6c85792
 
 
4a29657
 
6c85792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd73099
 
6c85792
3f34a00
 
 
cd73099
3f34a00
cd73099
 
6521610
5eb2692
 
b5bbd1f
d8dc6b8
 
 
 
5eb2692
 
 
d8dc6b8
6c85792
6521610
 
99108df
 
7942d31
 
6521610
 
 
7942d31
6521610
bb01b85
99108df
6521610
 
99108df
 
6521610
 
3f34a00
fc4f76a
6c85792
 
fc4f76a
6c85792
 
 
 
383d7cb
6c85792
32a7fde
93b8a3e
bb4525d
 
 
e2718c0
5f65d94
6c85792
4a29657
5f65d94
6c85792
 
 
 
5f65d94
 
e2718c0
6c85792
32a7fde
aa43f64
32a7fde
f9e0e97
9251ce3
fc4f76a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import gradio as gr
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2

from io import BytesIO
import requests
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from matplotlib import pyplot as plt
from torchvision import transforms
from diffusers import DiffusionPipeline

import io
import logging
import multiprocessing
import random
import time
import imghdr
from pathlib import Path
from typing import Union
from loguru import logger

from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config

try:
    torch._C._jit_override_can_fuse_on_cpu(False)
    torch._C._jit_override_can_fuse_on_gpu(False)
    torch._C._jit_set_texpr_fuser_enabled(False)
    torch._C._jit_set_nvfuser_enabled(False)
except:
    pass


from lama_cleaner.helper import (
    load_img,
    numpy_to_bytes,
    resize_max_size,
)

NUM_THREADS = str(multiprocessing.cpu_count())

# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"

os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
    os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]

os.environ["TORCH_HOME"] = './'

BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")

from share_btn import community_icon_html, loading_icon_html, share_js

HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')

def get_image_ext(img_bytes):
    w = imghdr.what("", img_bytes)
    if w is None:
        w = "jpeg"
    return w
    
def diffuser_callback(i, t, latents):
    pass

def preprocess_image(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0

def preprocess_mask(mask):
    mask = mask.convert("L")
    w, h = mask.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
    mask = np.array(mask).astype(np.float32) / 255.0
    mask = np.tile(mask, (4, 1, 1))
    mask = mask[None].transpose(0, 1, 2, 3)  # what does this step do?
    mask = 1 - mask  # repaint white, keep black
    mask = torch.from_numpy(mask)
    return mask
    
def load_img_1_(nparr, gray: bool = False):
    # alpha_channel = None
    # nparr = np.frombuffer(img_bytes, np.uint8)
    if gray:
        np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE)
    else:
        np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
        if len(np_img.shape) == 3 and np_img.shape[2] == 4:
            alpha_channel = np_img[:, :, -1]
            np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB)
        else:
            np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)

    return np_img, alpha_channel
    
model = None
def model_process_pil(input):
    global model
    
    # input = request.files
    # RGB
    # origin_image_bytes = input["image"].read()
    image_pil = input['image']
    mask_pil = input['mask']
        
    image = np.array(image_pil)
    mask = np.array(mask_pil.convert("L"))
    # print(f'image_pil_ = {type(image_pil)}')
    # print(f'mask_pil_ = {type(mask_pil)}') 
    # mask_pil.save(f'./mask_pil.png')         
        
    #image, alpha_channel = load_img(image)
    # Origin image shape: (512, 512, 3)
    
    alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)
    original_shape = image.shape
    interpolation = cv2.INTER_CUBIC    
    
    # form = request.form
    print(f'liuyz_3_here_', original_shape, alpha_channel, image.dtype, mask.dtype)

    size_limit = "Original" # image.shape[1] # : Union[int, str] = form.get("sizeLimit", "1080")
    if size_limit == "Original":
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)

    config = Config(
        ldm_steps=25,
        ldm_sampler='plms',
        zits_wireframe=True,
        hd_strategy='Original',
        hd_strategy_crop_margin=196,
        hd_strategy_crop_trigger_size=1280,
        hd_strategy_resize_limit=2048,
        prompt='',
        use_croper=False,
        croper_x=0,
        croper_y=0,
        croper_height=512,
        croper_width=512,
        sd_mask_blur=5,
        sd_strength=0.75,
        sd_steps=50,
        sd_guidance_scale=7.5,
        sd_sampler='ddim',
        sd_seed=42,
        cv2_flag='INPAINT_NS',
        cv2_radius=5,
    )
   
    # print(f'config = {config}')
    
    print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}')
    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)
    
    # logger.info(f"Origin image shape: {original_shape}")
    print(f"Origin image shape: {original_shape} / {image[250][250]}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
    # logger.info(f"Resized image shape: {image.shape}")
    print(f"Resized image shape: {image.shape} / {image[250][250]} / {image.dtype}")
    
    # mask, _ = load_img(mask, gray=True)
    #mask = np.array(mask_pil)
    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
    print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {mask.dtype}")

    if model is None:
        return None
        
    start = time.time()
    res_np_img = model(image, mask, config)
    logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
    print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")

    torch.cuda.empty_cache()

    if alpha_channel is not None:
        print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") 
        if alpha_channel.shape[:2] != res_np_img.shape[:2]:
            print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}")
            alpha_channel = cv2.resize(
                alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
            )
        print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
        res_np_img = np.concatenate(
            (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
        )
        print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
    print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
    ext = 'png'
    image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext)))
    image.save(f'./result_image.png')
    return image # res_np_img.astype(np.uint8) # image
    
    '''
    ext = get_image_ext(origin_image_bytes)
    return ext
    '''
    
def model_process_filepath(input): #image, mask):
    global model
    # {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
    # input = request.files
    # RGB
    origin_image_bytes = read_content(input["image"])
    print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))

    image, alpha_channel = load_img(origin_image_bytes)
    
    alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)
    original_shape = image.shape
    interpolation = cv2.INTER_CUBIC

    image_pil = Image.fromarray(image)
    # mask_pil = Image.fromarray(mask).convert("L")
    
    # form = request.form
    # print(f'size_limit_1_ =  ', form["sizeLimit"], type(input["image"]))
    size_limit = "Original" #: Union[int, str] = form.get("sizeLimit", "1080")
    print(f'size_limit_2_ =  {size_limit}')
    if size_limit == "Original":
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)
    print(f'size_limit_3_ =  {size_limit}')

    config = Config(
        ldm_steps=25,
        ldm_sampler='plms',
        zits_wireframe=True,
        hd_strategy='Original',
        hd_strategy_crop_margin=196,
        hd_strategy_crop_trigger_size=1280,
        hd_strategy_resize_limit=2048,
        prompt='',
        use_croper=False,
        croper_x=0,
        croper_y=0,
        croper_height=512,
        croper_width=512,
        sd_mask_blur=5,
        sd_strength=0.75,
        sd_steps=50,
        sd_guidance_scale=7.5,
        sd_sampler='ddim',
        sd_seed=42,
        cv2_flag='INPAINT_NS',
        cv2_radius=5,
    )
    
    print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}')
    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)

    logger.info(f"Origin image shape: {original_shape}")
    print(f"Origin image shape: {original_shape} / {image[250][250]}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
    logger.info(f"Resized image shape: {image.shape} / {type(image)}")
    print(f"Resized image shape: {image.shape} / {image[250][250]}")

    mask, _ = load_img(read_content(input["mask"]), gray=True)
    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
    print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")

    if model is None:
        return None
        
    start = time.time()
    res_np_img = model(image, mask, config)
    logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
    print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")

    torch.cuda.empty_cache()

    if alpha_channel is not None:
        print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") 
        if alpha_channel.shape[:2] != res_np_img.shape[:2]:
            print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}")
            alpha_channel = cv2.resize(
                alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
            )
        print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
        res_np_img = np.concatenate(
            (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
        )
        print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
    ext = get_image_ext(origin_image_bytes)
    print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype} /{ext}")
  
    image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext)))
    image.save(f'./result_image.png')
    return  image # image

def model_process(image, mask, alpha_channel, ext):
    global model
    original_shape = image.shape
    interpolation = cv2.INTER_CUBIC

    # image_pil = Image.fromarray(image)
    # mask_pil = Image.fromarray(mask).convert("L")
    
    size_limit = "Original"
    print(f'size_limit_2_ =  {size_limit}')
    if size_limit == "Original":
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)
    print(f'size_limit_3_ =  {size_limit}')

    config = Config(
        ldm_steps=25,
        ldm_sampler='plms',
        zits_wireframe=True,
        hd_strategy='Original',
        hd_strategy_crop_margin=196,
        hd_strategy_crop_trigger_size=1280,
        hd_strategy_resize_limit=2048,
        prompt='',
        use_croper=False,
        croper_x=0,
        croper_y=0,
        croper_height=512,
        croper_width=512,
        sd_mask_blur=5,
        sd_strength=0.75,
        sd_steps=50,
        sd_guidance_scale=7.5,
        sd_sampler='ddim',
        sd_seed=42,
        cv2_flag='INPAINT_NS',
        cv2_radius=5,
    )
    
    print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}')
    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)

    logger.info(f"Origin image shape: {original_shape}")
    print(f"Origin image shape: {original_shape} / {image[250][250]}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
    logger.info(f"Resized image shape: {image.shape} / {type(image)}")
    print(f"Resized image shape: {image.shape} / {image[250][250]}")

    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
    print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")

    if model is None:
        return None
        
    start = time.time()
    res_np_img = model(image, mask, config)
    logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
    print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")

    torch.cuda.empty_cache()

    if alpha_channel is not None:
        print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}") 
        if alpha_channel.shape[:2] != res_np_img.shape[:2]:
            print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}")
            alpha_channel = cv2.resize(
                alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
            )
        print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
        res_np_img = np.concatenate(
            (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
        )
        print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
    
    print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype} /{ext}")
  
    image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext)))
    return  image # image
    
model = ModelManager(
        name='lama',
        device=device,
        # hf_access_token=HF_TOKEN_SD,
        # sd_disable_nsfw=False,
        # sd_cpu_textencoder=True,
        # sd_run_local=True,
        # callback=diffuser_callback,
    )

'''
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)

transform = transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
      transforms.Resize((512, 512)),
])
'''

def read_content(file_path):
    """read the content of target file
    """
    with open(file_path, 'rb') as f:
        content = f.read()

    return content

image_type = 'pil'  #'filepath' #'pil'
def predict(input):
    print(f'liuyz_0_', input)  
    '''
    image_np = np.array(input["image"])
    print(f'image_np = {image_np.shape}')
    mask_np = np.array(input["mask"])
    print(f'mask_np = {mask_np.shape}')   
    ''' 
    '''
    image = dict["image"] # .convert("RGB") #.resize((512, 512))
    # target_size = (init_image.shape[0], init_image.shape[1])
    print(f'liuyz_1_', image.shape)
    print(f'liuyz_2_', image.convert("RGB").shape)
    print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
    # mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
    '''   
    if image_type == 'filepath':
        # input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
        origin_image_bytes = read_content(input["image"])
        print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))    
        image, _ = load_img(origin_image_bytes) 
        mask, _ = load_img(read_content(input["mask"]), gray=True)       
        alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)  
        ext = get_image_ext(origin_image_bytes)
        
        output = model_process(image, mask, alpha_channel, ext)
    elif image_type == 'pil':
        # input: {'image': pil, 'mask': pil}
        image_pil = input['image']
        mask_pil = input['mask']
            
        image = np.array(image_pil)
        mask = np.array(mask_pil.convert("L"))
        alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)  
        ext = 'png'
        
        output = model_process(image, mask, alpha_channel, ext)
    
    # output = mask #output.images[0]
    # output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
    # output = input["mask"]
    # output = None
    return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

print(f'liuyz_500_here_')

css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:512px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 512px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''

'''
sketchpad = Sketchpad()
imageupload = ImageUplaod()
interface = gr.Interface(fn=predict, inputs="image", outputs="image", sketchpad, imageupload)

interface.launch(share=True)
'''

'''
# gr.Interface(fn=predict, inputs="image", outputs="image").launch(share=True)

image = gr.Image(source='upload', tool='sketch', type="pil", label="Upload")# .style(height=400)
image_blocks = gr.Interface(
             fn=predict, 
             inputs=image,
             outputs=image,
             # examples=[["cheetah.jpg"]],
             )
             
image_blocks.launch(inline=True)

import gradio as gr

def greet(dict, name, is_morning, temperature):
    image = dict['image']
    target_size = (image.shape[0], image.shape[1])
    print(f'liuyz_1_', target_size)
    salutation = "Good morning" if is_morning else "Good evening"
    greeting = f"{salutation} {name}. It is {temperature} degrees today"
    celsius = (temperature - 32) * 5 / 9
    return image, greeting, round(celsius, 2)

image = gr.Image(source='upload', tool='sketch', label="上传")# .style(height=400)

demo = gr.Interface(
    fn=greet,
    inputs=[image, "text", "checkbox", gr.Slider(0, 100)],
    outputs=['image', "text", "number"],
)
demo.launch()
'''

image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    # gr.HTML(read_content("header.html"))
    with gr.Group():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch',type=f'{image_type}', label="Upload").style(height=512)
                    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                        # prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
                        btn = gr.Button("Done!").style(
                            margin=True,
                            rounded=(True, True, True, True),
                            full_width=True,
                        )                
                
                with gr.Column():
                    image_out = gr.Image(label="Output").style(height=512)
                    '''
                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html, visible=False)
                        loading_icon = gr.HTML(loading_icon_html, visible=False)
                        share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
                    '''
               
                

            # btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button])
            btn.click(fn=predict, inputs=[image], outputs=[image_out]) #, community_icon, loading_icon, share_button])
            #share_button.click(None, [], [], _js=share_js)
            
            
image_blocks.launch()