Spaces:
Running
Running
File size: 21,743 Bytes
6c85792 c8cb9bb 6c85792 45faff1 6c85792 a5ca5a6 a18a2d9 a5ca5a6 a18a2d9 a5ca5a6 bba2454 a5ca5a6 774d798 a5ca5a6 344868a a5ca5a6 ec107df 6c85792 8d01019 6c85792 21fc719 6c85792 8d01019 a5ca5a6 bb4525d e9e2ff1 43859c3 bba2454 383d7cb f73b71e c8cb9bb f73b71e c8cb9bb 72b7fc6 a0c3f48 72b7fc6 50e8fd2 a0c3f48 0e4c0f7 43859c3 21da9c1 7372fa3 bba2454 c8cb9bb 039e64f 7372fa3 a0c3f48 f73b71e 3079cc3 f73b71e 19586cf 98baf00 19586cf 7372fa3 3079cc3 98baf00 f73b71e 3079cc3 65d6992 bba2454 a0c3f48 72b7fc6 7372fa3 039e64f 7372fa3 bba2454 f73b71e 19586cf 039e64f f73b71e 08d22d8 f73b71e 7e3a73d f73b71e 41164d3 f73b71e 7e3a73d f73b71e b3c6cb3 811f999 235c943 6efd69c 08d22d8 6efd69c 08d22d8 f73b71e 19586cf f73b71e 383d7cb ea1e63c 98d0e5b ea1e63c 960b239 ea1e63c 4aefcfd ea1e63c 383d7cb 9400c80 ea1e63c 9400c80 ea1e63c 9400c80 ea1e63c 4aefcfd ea1e63c 960b239 ea1e63c 383d7cb ea1e63c 383d7cb ea1e63c 383d7cb ea1e63c 383d7cb ea1e63c 383d7cb ea1e63c 383d7cb 4aefcfd 383d7cb d69f20a ea1e63c d69f20a ea1e63c 6717f64 ea1e63c 6717f64 ea1e63c a5ca5a6 2976d00 8997d74 a5ca5a6 60be08d 6c85792 60be08d 6c85792 5534598 6c85792 384748d 6c85792 235c943 31e7adc 960b239 e20fa2d 076742e 960b239 6220748 3ae9189 290938b 3ae9189 e20fa2d 383d7cb 6717f64 383d7cb 6717f64 e20fa2d 19586cf f73b71e f4e2d95 383d7cb bf8d6fe 6c85792 210411f 6c85792 4a29657 6c85792 cd73099 6c85792 3f34a00 cd73099 3f34a00 cd73099 6521610 5eb2692 b5bbd1f d8dc6b8 5eb2692 d8dc6b8 6c85792 6521610 99108df 7942d31 6521610 7942d31 6521610 bb01b85 99108df 6521610 99108df 6521610 3f34a00 fc4f76a 6c85792 fc4f76a 6c85792 383d7cb 6c85792 32a7fde 93b8a3e bb4525d e2718c0 5f65d94 6c85792 4a29657 5f65d94 6c85792 5f65d94 e2718c0 6c85792 32a7fde aa43f64 32a7fde f9e0e97 9251ce3 fc4f76a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import gradio as gr
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from io import BytesIO
import requests
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from matplotlib import pyplot as plt
from torchvision import transforms
from diffusers import DiffusionPipeline
import io
import logging
import multiprocessing
import random
import time
import imghdr
from pathlib import Path
from typing import Union
from loguru import logger
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
os.environ["TORCH_HOME"] = './'
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
from share_btn import community_icon_html, loading_icon_html, share_js
HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')
def get_image_ext(img_bytes):
w = imghdr.what("", img_bytes)
if w is None:
w = "jpeg"
return w
def diffuser_callback(i, t, latents):
pass
def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def preprocess_mask(mask):
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
mask = 1 - mask # repaint white, keep black
mask = torch.from_numpy(mask)
return mask
def load_img_1_(nparr, gray: bool = False):
# alpha_channel = None
# nparr = np.frombuffer(img_bytes, np.uint8)
if gray:
np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE)
else:
np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
if len(np_img.shape) == 3 and np_img.shape[2] == 4:
alpha_channel = np_img[:, :, -1]
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB)
else:
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)
return np_img, alpha_channel
model = None
def model_process_pil(input):
global model
# input = request.files
# RGB
# origin_image_bytes = input["image"].read()
image_pil = input['image']
mask_pil = input['mask']
image = np.array(image_pil)
mask = np.array(mask_pil.convert("L"))
# print(f'image_pil_ = {type(image_pil)}')
# print(f'mask_pil_ = {type(mask_pil)}')
# mask_pil.save(f'./mask_pil.png')
#image, alpha_channel = load_img(image)
# Origin image shape: (512, 512, 3)
alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
# form = request.form
print(f'liuyz_3_here_', original_shape, alpha_channel, image.dtype, mask.dtype)
size_limit = "Original" # image.shape[1] # : Union[int, str] = form.get("sizeLimit", "1080")
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
config = Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
# print(f'config = {config}')
print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}')
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
# logger.info(f"Origin image shape: {original_shape}")
print(f"Origin image shape: {original_shape} / {image[250][250]}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
# logger.info(f"Resized image shape: {image.shape}")
print(f"Resized image shape: {image.shape} / {image[250][250]} / {image.dtype}")
# mask, _ = load_img(mask, gray=True)
#mask = np.array(mask_pil)
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {mask.dtype}")
if model is None:
return None
start = time.time()
res_np_img = model(image, mask, config)
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
torch.cuda.empty_cache()
if alpha_channel is not None:
print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}")
alpha_channel = cv2.resize(
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
)
print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
ext = 'png'
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext)))
image.save(f'./result_image.png')
return image # res_np_img.astype(np.uint8) # image
'''
ext = get_image_ext(origin_image_bytes)
return ext
'''
def model_process_filepath(input): #image, mask):
global model
# {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
# input = request.files
# RGB
origin_image_bytes = read_content(input["image"])
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
image, alpha_channel = load_img(origin_image_bytes)
alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
image_pil = Image.fromarray(image)
# mask_pil = Image.fromarray(mask).convert("L")
# form = request.form
# print(f'size_limit_1_ = ', form["sizeLimit"], type(input["image"]))
size_limit = "Original" #: Union[int, str] = form.get("sizeLimit", "1080")
print(f'size_limit_2_ = {size_limit}')
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
print(f'size_limit_3_ = {size_limit}')
config = Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}')
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
print(f"Origin image shape: {original_shape} / {image[250][250]}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape} / {type(image)}")
print(f"Resized image shape: {image.shape} / {image[250][250]}")
mask, _ = load_img(read_content(input["mask"]), gray=True)
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")
if model is None:
return None
start = time.time()
res_np_img = model(image, mask, config)
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
torch.cuda.empty_cache()
if alpha_channel is not None:
print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}")
alpha_channel = cv2.resize(
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
)
print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
ext = get_image_ext(origin_image_bytes)
print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype} /{ext}")
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext)))
image.save(f'./result_image.png')
return image # image
def model_process(image, mask, alpha_channel, ext):
global model
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
# image_pil = Image.fromarray(image)
# mask_pil = Image.fromarray(mask).convert("L")
size_limit = "Original"
print(f'size_limit_2_ = {size_limit}')
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
print(f'size_limit_3_ = {size_limit}')
config = Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}')
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
print(f"Origin image shape: {original_shape} / {image[250][250]}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape} / {type(image)}")
print(f"Resized image shape: {image.shape} / {image[250][250]}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")
if model is None:
return None
start = time.time()
res_np_img = model(image, mask, config)
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
torch.cuda.empty_cache()
if alpha_channel is not None:
print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}")
alpha_channel = cv2.resize(
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
)
print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype} /{ext}")
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, ext)))
return image # image
model = ModelManager(
name='lama',
device=device,
# hf_access_token=HF_TOKEN_SD,
# sd_disable_nsfw=False,
# sd_cpu_textencoder=True,
# sd_run_local=True,
# callback=diffuser_callback,
)
'''
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.Resize((512, 512)),
])
'''
def read_content(file_path):
"""read the content of target file
"""
with open(file_path, 'rb') as f:
content = f.read()
return content
image_type = 'pil' #'filepath' #'pil'
def predict(input):
print(f'liuyz_0_', input)
'''
image_np = np.array(input["image"])
print(f'image_np = {image_np.shape}')
mask_np = np.array(input["mask"])
print(f'mask_np = {mask_np.shape}')
'''
'''
image = dict["image"] # .convert("RGB") #.resize((512, 512))
# target_size = (init_image.shape[0], init_image.shape[1])
print(f'liuyz_1_', image.shape)
print(f'liuyz_2_', image.convert("RGB").shape)
print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
# mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
'''
if image_type == 'filepath':
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
origin_image_bytes = read_content(input["image"])
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
image, _ = load_img(origin_image_bytes)
mask, _ = load_img(read_content(input["mask"]), gray=True)
alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)
ext = get_image_ext(origin_image_bytes)
output = model_process(image, mask, alpha_channel, ext)
elif image_type == 'pil':
# input: {'image': pil, 'mask': pil}
image_pil = input['image']
mask_pil = input['mask']
image = np.array(image_pil)
mask = np.array(mask_pil.convert("L"))
alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)
ext = 'png'
output = model_process(image, mask, alpha_channel, ext)
# output = mask #output.images[0]
# output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
# output = input["mask"]
# output = None
return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
print(f'liuyz_500_here_')
css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:512px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 512px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
'''
'''
sketchpad = Sketchpad()
imageupload = ImageUplaod()
interface = gr.Interface(fn=predict, inputs="image", outputs="image", sketchpad, imageupload)
interface.launch(share=True)
'''
'''
# gr.Interface(fn=predict, inputs="image", outputs="image").launch(share=True)
image = gr.Image(source='upload', tool='sketch', type="pil", label="Upload")# .style(height=400)
image_blocks = gr.Interface(
fn=predict,
inputs=image,
outputs=image,
# examples=[["cheetah.jpg"]],
)
image_blocks.launch(inline=True)
import gradio as gr
def greet(dict, name, is_morning, temperature):
image = dict['image']
target_size = (image.shape[0], image.shape[1])
print(f'liuyz_1_', target_size)
salutation = "Good morning" if is_morning else "Good evening"
greeting = f"{salutation} {name}. It is {temperature} degrees today"
celsius = (temperature - 32) * 5 / 9
return image, greeting, round(celsius, 2)
image = gr.Image(source='upload', tool='sketch', label="上传")# .style(height=400)
demo = gr.Interface(
fn=greet,
inputs=[image, "text", "checkbox", gr.Slider(0, 100)],
outputs=['image', "text", "number"],
)
demo.launch()
'''
image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
# gr.HTML(read_content("header.html"))
with gr.Group():
with gr.Box():
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool='sketch',type=f'{image_type}', label="Upload").style(height=512)
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
# prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
btn = gr.Button("Done!").style(
margin=True,
rounded=(True, True, True, True),
full_width=True,
)
with gr.Column():
image_out = gr.Image(label="Output").style(height=512)
'''
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
'''
# btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button])
btn.click(fn=predict, inputs=[image], outputs=[image_out]) #, community_icon, loading_icon, share_button])
#share_button.click(None, [], [], _js=share_js)
image_blocks.launch()
|