# coding=utf-8 # Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Data2VecVision model.""" import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_vision import Data2VecVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Data2VecVisionConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" _IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/data2vec-vision-base-ft1k", # See all Data2VecVision models at https://huggingface.co/models?filter=data2vec-vision ] @dataclass # Copied from transformers.models.beit.modeling_beit.BeitModelOutputWithPooling with Beit->Data2VecVision class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling): """ Class for outputs of [`Data2VecVisionModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Data2VecVision class Data2VecVisionDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.beit.modeling_beit.BeitEmbeddings with Beit->Data2VecVision class Data2VecVisionEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if config.use_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) else: self.mask_token = None self.patch_embeddings = Data2VecVisionPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches if config.use_absolute_position_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) else: self.position_embeddings = None self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = torch.cat((cls_tokens, embeddings), dim=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.beit.modeling_beit.BeitPatchEmbeddings with Beit->Data2VecVision class Data2VecVisionPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.beit.modeling_beit.BeitSelfAttention with Beit->Data2VecVision class Data2VecVisionSelfAttention(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Add relative position bias if present. if self.relative_position_bias is not None: attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0) # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.beit.modeling_beit.BeitSelfOutput with Beit->Data2VecVision class Data2VecVisionSelfOutput(nn.Module): """ The residual connection is defined in Data2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.BeitAttention with Beit->Data2VecVision class Data2VecVisionAttention(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.attention = Data2VecVisionSelfAttention(config, window_size=window_size) self.output = Data2VecVisionSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.beit.modeling_beit.BeitIntermediate with Beit->Data2VecVision class Data2VecVisionIntermediate(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.BeitOutput with Beit->Data2VecVision class Data2VecVisionOutput(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.BeitLayer with Beit->Data2VecVision,BEiT->Data2VecVision class Data2VecVisionLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0 ) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Data2VecVisionAttention(config, window_size=window_size) self.intermediate = Data2VecVisionIntermediate(config) self.output = Data2VecVisionOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.drop_path = Data2VecVisionDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) init_values = config.layer_scale_init_value if init_values > 0: self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) else: self.lambda_1, self.lambda_2 = None, None def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in Data2VecVision, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.beit.modeling_beit.BeitRelativePositionBias with Beit->Data2VecVision class Data2VecVisionRelativePositionBias(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: tuple) -> None: super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, config.num_attention_heads) ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros( size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype ) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index, persistent=False) def forward(self) -> torch.Tensor: relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 ) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww # Copied from transformers.models.beit.modeling_beit.BeitEncoder with Beit->Data2VecVision class Data2VecVisionEncoder(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.layer = nn.ModuleList( [ Data2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], ) for i in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: relative_position_bias = ( self.relative_position_bias() if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.beit.modeling_beit.BeitPreTrainedModel with Beit->Data2VecVision,beit->data2vec_vision class Data2VecVisionPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, Data2VecVisionEncoder): module.gradient_checkpointing = value DATA2VEC_VISION_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VEC_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BeitImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", DATA2VEC_VISION_START_DOCSTRING, ) # Copied from transformers.models.beit.modeling_beit.BeitModel with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,True->False class Data2VecVisionModel(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False) -> None: super().__init__(config) self.config = config self.embeddings = Data2VecVisionEmbeddings(config) self.encoder = Data2VecVisionEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) self.layernorm = ( nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) ) self.pooler = Data2VecVisionPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Data2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, Data2VecVisionModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return Data2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.beit.modeling_beit.BeitPooler with Beit->Data2VecVision class Data2VecVisionPooler(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.layernorm = ( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(patch_tokens.mean(1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output @add_start_docstrings( """ Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, DATA2VEC_VISION_START_DOCSTRING, ) # Copied from transformers.models.beit.modeling_beit.BeitForImageClassification with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,beit->data2vec_vision class Data2VecVisionForImageClassification(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=True) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.beit.modeling_beit.BeitConvModule with Beit->Data2VecVision class Data2VecVisionConvModule(nn.Module): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int], str] = 0, bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, bias=bias, dilation=dilation, ) self.bn = nn.BatchNorm2d(out_channels) self.activation = nn.ReLU() def forward(self, input: torch.Tensor) -> torch.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output # Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingBlock with Beit->Data2VecVision class Data2VecVisionPyramidPoolingBlock(nn.Module): def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: super().__init__() self.layers = [ nn.AdaptiveAvgPool2d(pool_scale), Data2VecVisionConvModule(in_channels, channels, kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state # Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingModule with Beit->Data2VecVision class Data2VecVisionPyramidPoolingModule(nn.Module): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. in_channels (int): Input channels. channels (int): Channels after modules, before conv_seg. align_corners (bool): align_corners argument of F.interpolate. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: super().__init__() self.pool_scales = pool_scales self.align_corners = align_corners self.in_channels = in_channels self.channels = channels self.blocks = [] for i, pool_scale in enumerate(pool_scales): block = Data2VecVisionPyramidPoolingBlock( pool_scale=pool_scale, in_channels=in_channels, channels=channels ) self.blocks.append(block) self.add_module(str(i), block) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: ppm_outs = [] for ppm in self.blocks: ppm_out = ppm(x) upsampled_ppm_out = nn.functional.interpolate( ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners ) ppm_outs.append(upsampled_ppm_out) return ppm_outs # Copied from transformers.models.beit.modeling_beit.BeitUperHead with Beit->Data2VecVision class Data2VecVisionUperHead(nn.Module): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.align_corners = False self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) # PSP Module self.psp_modules = Data2VecVisionPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) self.bottleneck = Data2VecVisionConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer l_conv = Data2VecVisionConvModule(in_channels, self.channels, kernel_size=1) fpn_conv = Data2VecVisionConvModule(self.channels, self.channels, kernel_size=3, padding=1) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = Data2VecVisionConvModule( len(self.in_channels) * self.channels, self.channels, kernel_size=3, padding=1, ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = torch.cat(psp_outs, dim=1) output = self.bottleneck(psp_outs) return output def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners ) # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners ) fpn_outs = torch.cat(fpn_outs, dim=1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output # Copied from transformers.models.beit.modeling_beit.BeitFCNHead with Beit->Data2VecVision class Data2VecVisionFCNHead(nn.Module): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented of [FCNNet](https://arxiv.org/abs/1411.4038>). Args: config (Data2VecVisionConfig): Configuration. in_channels kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index conv_padding = (kernel_size // 2) * dilation convs = [] convs.append( Data2VecVisionConvModule( self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) for i in range(self.num_convs - 1): convs.append( Data2VecVisionConvModule( self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) if self.num_convs == 0: self.convs = nn.Identity() else: self.convs = nn.Sequential(*convs) if self.concat_input: self.conv_cat = Data2VecVisionConvModule( self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 ) self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = self.convs(hidden_states) if self.concat_input: output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) output = self.classifier(output) return output @add_start_docstrings( """ Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DATA2VEC_VISION_START_DOCSTRING, ) # Copied from transformers.models.beit.modeling_beit.BeitForSemanticSegmentation with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,microsoft/beit-base-finetuned-ade-640-640->facebook/data2vec-vision-base,beit->data2vec_vision class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=False) # FPNs self.fpn1 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), nn.BatchNorm2d(config.hidden_size), nn.GELU(), nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) # Semantic segmentation head(s) self.decode_head = Data2VecVisionUperHead(config) self.auxiliary_head = Data2VecVisionFCNHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) loss = main_loss if auxiliary_logits is not None: auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss += self.config.auxiliary_loss_weight * auxiliary_loss return loss @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, Data2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") >>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] batch_size = pixel_values.shape[0] patch_resolution = self.config.image_size // self.config.patch_size features = [ x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features ] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) logits = self.decode_head(features) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )