# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxNextSentencePredictorOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_bert import BertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" remat = nn_partitioning.remat @flax.struct.dataclass class FlaxBertForPreTrainingOutput(ModelOutput): """ Output type of [`BertForPreTraining`]. Args: prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_logits: jnp.ndarray = None seq_relationship_logits: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None BERT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxBertSelfAttention(nn.Module): config: BertConfig causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.head_dim = self.config.hidden_size // self.config.num_attention_heads if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) @nn.compact # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states: Optional[jnp.array] = None, init_cache: bool = False, deterministic=True, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.query(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.key(key_value_states) value_states = self.value(key_value_states) else: # self_attention key_states = self.key(hidden_states) value_states = self.value(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) # Mask heads if we want to if layer_head_mask is not None: attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxBertSelfOutput(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class FlaxBertAttention(nn.Module): config: BertConfig causal: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): self.self = FlaxBertSelfAttention(self.config, causal=self.causal, dtype=self.dtype) self.output = FlaxBertSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states=None, init_cache=False, deterministic=True, output_attentions: bool = False, ): # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) attn_outputs = self.self( hidden_states, attention_mask, layer_head_mask=layer_head_mask, key_value_states=key_value_states, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs class FlaxBertIntermediate(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class FlaxBertOutput(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + attention_output) return hidden_states class FlaxBertLayer(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxBertAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype) self.intermediate = FlaxBertIntermediate(self.config, dtype=self.dtype) self.output = FlaxBertOutput(self.config, dtype=self.dtype) if self.config.add_cross_attention: self.crossattention = FlaxBertAttention(self.config, causal=False, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, ): # Self Attention attention_outputs = self.attention( hidden_states, attention_mask, layer_head_mask=layer_head_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] # Cross-Attention Block if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask=encoder_attention_mask, layer_head_mask=layer_head_mask, key_value_states=encoder_hidden_states, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] hidden_states = self.intermediate(attention_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) if encoder_hidden_states is not None: outputs += (cross_attention_outputs[1],) return outputs class FlaxBertLayerCollection(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxBertCheckpointLayer = remat(FlaxBertLayer, static_argnums=(5, 6, 7)) self.layers = [ FlaxBertCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] else: self.layers = [ FlaxBertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None # Check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.shape[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for " f" {head_mask.shape[0]}." ) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, head_mask[i] if head_mask is not None else None, encoder_hidden_states, encoder_attention_mask, init_cache, deterministic, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) class FlaxBertEncoder(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.layer = FlaxBertLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxBertPooler(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__(self, hidden_states): cls_hidden_state = hidden_states[:, 0] cls_hidden_state = self.dense(cls_hidden_state) return nn.tanh(cls_hidden_state) class FlaxBertPredictionHeadTransform(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) self.activation = ACT2FN[self.config.hidden_act] self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return self.LayerNorm(hidden_states) class FlaxBertLMPredictionHead(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.transform = FlaxBertPredictionHeadTransform(self.config, dtype=self.dtype) self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.transform(hidden_states) if shared_embedding is not None: hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: hidden_states = self.decoder(hidden_states) bias = jnp.asarray(self.bias, self.dtype) hidden_states += bias return hidden_states class FlaxBertOnlyMLMHead(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding) return hidden_states class FlaxBertOnlyNSPHead(nn.Module): dtype: jnp.dtype = jnp.float32 def setup(self): self.seq_relationship = nn.Dense(2, dtype=self.dtype) def __call__(self, pooled_output): return self.seq_relationship(pooled_output) class FlaxBertPreTrainingHeads(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype) self.seq_relationship = nn.Dense(2, dtype=self.dtype) def __call__(self, hidden_states, pooled_output, shared_embedding=None): prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class FlaxBertPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig base_model_prefix = "bert" module_class: nn.Module = None def __init__( self, config: BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class( config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs, ) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.zeros_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) attention_mask = jnp.ones_like(input_ids) head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, past_key_values: dict = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} if self.config.add_cross_attention: # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxBertAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] else: outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) return outputs class FlaxBertModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True gradient_checkpointing: bool = False def setup(self): self.embeddings = FlaxBertEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxBertEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.pooler = FlaxBertPooler(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # make sure `token_type_ids` is correctly initialized when not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) # make sure `position_ids` is correctly initialized when not passed if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) hidden_states = self.embeddings( input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic ) outputs = self.encoder( hidden_states, attention_mask, head_mask=head_mask, deterministic=deterministic, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled = self.pooler(hidden_states) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class FlaxBertModel(FlaxBertPreTrainedModel): module_class = FlaxBertModule append_call_sample_docstring(FlaxBertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) class FlaxBertForPreTrainingModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBertPreTrainingHeads(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None hidden_states = outputs[0] pooled_output = outputs[1] prediction_scores, seq_relationship_score = self.cls( hidden_states, pooled_output, shared_embedding=shared_embedding ) if not return_dict: return (prediction_scores, seq_relationship_score) + outputs[2:] return FlaxBertForPreTrainingOutput( prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class FlaxBertForPreTraining(FlaxBertPreTrainedModel): module_class = FlaxBertForPreTrainingModule FLAX_BERT_FOR_PRETRAINING_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = FlaxBertForPreTraining.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ overwrite_call_docstring( FlaxBertForPreTraining, BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_PRETRAINING_DOCSTRING, ) append_replace_return_docstrings( FlaxBertForPreTraining, output_type=FlaxBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC ) class FlaxBertForMaskedLMModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.cls(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING) class FlaxBertForMaskedLM(FlaxBertPreTrainedModel): module_class = FlaxBertForMaskedLMModule append_call_sample_docstring(FlaxBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) class FlaxBertForNextSentencePredictionModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBertOnlyNSPHead(dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.return_dict # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) if not return_dict: return (seq_relationship_scores,) + outputs[2:] return FlaxNextSentencePredictorOutput( logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top.""", BERT_START_DOCSTRING, ) class FlaxBertForNextSentencePrediction(FlaxBertPreTrainedModel): module_class = FlaxBertForNextSentencePredictionModule FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = FlaxBertForNextSentencePrediction.from_pretrained("bert-base-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="jax") >>> outputs = model(**encoding) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ overwrite_call_docstring( FlaxBertForNextSentencePrediction, BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING, ) append_replace_return_docstrings( FlaxBertForNextSentencePrediction, output_type=FlaxNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC ) class FlaxBertForSequenceClassificationModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense( self.config.num_labels, dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) if not return_dict: return (logits,) + outputs[2:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class FlaxBertForSequenceClassification(FlaxBertPreTrainedModel): module_class = FlaxBertForSequenceClassificationModule append_call_sample_docstring( FlaxBertForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxBertForMultipleChoiceModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class FlaxBertForMultipleChoice(FlaxBertPreTrainedModel): module_class = FlaxBertForMultipleChoiceModule overwrite_call_docstring( FlaxBertForMultipleChoice, BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxBertForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC ) class FlaxBertForTokenClassificationModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class FlaxBertForTokenClassification(FlaxBertPreTrainedModel): module_class = FlaxBertForTokenClassificationModule append_call_sample_docstring( FlaxBertForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC ) class FlaxBertForQuestionAnsweringModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.qa_outputs(hidden_states) start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class FlaxBertForQuestionAnswering(FlaxBertPreTrainedModel): module_class = FlaxBertForQuestionAnsweringModule append_call_sample_docstring( FlaxBertForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) class FlaxBertForCausalLMModule(nn.Module): config: BertConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBertModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, token_type_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.cls(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Bert Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks. """, BERT_START_DOCSTRING, ) class FlaxBertForCausalLM(FlaxBertPreTrainedModel): module_class = FlaxBertForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxBertForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, )