# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory function to build auto-model classes.""" import copy import importlib import json import os import warnings from collections import OrderedDict from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...utils import ( CONFIG_NAME, cached_file, copy_func, extract_commit_hash, find_adapter_config_file, is_peft_available, logging, requires_backends, ) from .configuration_auto import AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings logger = logging.get_logger(__name__) CLASS_DOCSTRING = """ This is a generic model class that will be instantiated as one of the model classes of the library when created with the [`~BaseAutoModelClass.from_pretrained`] class method or the [`~BaseAutoModelClass.from_config`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ FROM_CONFIG_DOCSTRING = """ Instantiates one of the model classes of the library from a configuration. Note: Loading a model from its configuration file does **not** load the model weights. It only affects the model's configuration. Use [`~BaseAutoModelClass.from_pretrained`] to load the model weights. Args: config ([`PretrainedConfig`]): The model class to instantiate is selected based on the configuration class: List options Examples: ```python >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download configuration from huggingface.co and cache. >>> config = AutoConfig.from_pretrained("checkpoint_placeholder") >>> model = BaseAutoModelClass.from_config(config) ``` """ FROM_PRETRAINED_TORCH_DOCSTRING = """ Instantiate one of the model classes of the library from a pretrained model. The model class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options The model is set in evaluation mode by default using `model.eval()` (so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode with `model.train()` Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (additional positional arguments, *optional*): Will be passed along to the underlying model `__init__()` method. config ([`PretrainedConfig`], *optional*): Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the *model id* string of a pretrained model). - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a configuration JSON file named *config.json* is found in the directory. state_dict (*Dict[str, torch.Tensor]*, *optional*): A state dictionary to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and [`~PreTrainedModel.from_pretrained`] is not a simpler option. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_tf (`bool`, *optional*, defaults to `False`): Load the model weights from a TensorFlow checkpoint save file (see docstring of `pretrained_model_name_or_path` argument). force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (e.g., not try downloading the model). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. code_revision (`str`, *optional*, defaults to `"main"`): The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. kwargs (additional keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `**kwargs` will be directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, `kwargs` will be first passed to the configuration class initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that corresponds to a configuration attribute will be used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's `__init__` function. Examples: ```python >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download model and configuration from huggingface.co and cache. >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder") >>> # Update configuration during loading >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_pretrained("./tf_model/shortcut_placeholder_tf_model_config.json") >>> model = BaseAutoModelClass.from_pretrained( ... "./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index", from_tf=True, config=config ... ) ``` """ FROM_PRETRAINED_TF_DOCSTRING = """ Instantiate one of the model classes of the library from a pretrained model. The model class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this case, `from_pt` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards. model_args (additional positional arguments, *optional*): Will be passed along to the underlying model `__init__()` method. config ([`PretrainedConfig`], *optional*): Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the *model id* string of a pretrained model). - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a configuration JSON file named *config.json* is found in the directory. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_pt (`bool`, *optional*, defaults to `False`): Load the model weights from a PyTorch checkpoint save file (see docstring of `pretrained_model_name_or_path` argument). force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (e.g., not try downloading the model). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. code_revision (`str`, *optional*, defaults to `"main"`): The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. kwargs (additional keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `**kwargs` will be directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, `kwargs` will be first passed to the configuration class initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that corresponds to a configuration attribute will be used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's `__init__` function. Examples: ```python >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download model and configuration from huggingface.co and cache. >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder") >>> # Update configuration during loading >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json") >>> model = BaseAutoModelClass.from_pretrained( ... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config ... ) ``` """ FROM_PRETRAINED_FLAX_DOCSTRING = """ Instantiate one of the model classes of the library from a pretrained model. The model class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this case, `from_pt` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards. model_args (additional positional arguments, *optional*): Will be passed along to the underlying model `__init__()` method. config ([`PretrainedConfig`], *optional*): Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the *model id* string of a pretrained model). - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a configuration JSON file named *config.json* is found in the directory. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_pt (`bool`, *optional*, defaults to `False`): Load the model weights from a PyTorch checkpoint save file (see docstring of `pretrained_model_name_or_path` argument). force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (e.g., not try downloading the model). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. code_revision (`str`, *optional*, defaults to `"main"`): The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. kwargs (additional keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `**kwargs` will be directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, `kwargs` will be first passed to the configuration class initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that corresponds to a configuration attribute will be used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's `__init__` function. Examples: ```python >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download model and configuration from huggingface.co and cache. >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder") >>> # Update configuration during loading >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json") >>> model = BaseAutoModelClass.from_pretrained( ... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config ... ) ``` """ def _get_model_class(config, model_mapping): supported_models = model_mapping[type(config)] if not isinstance(supported_models, (list, tuple)): return supported_models name_to_model = {model.__name__: model for model in supported_models} architectures = getattr(config, "architectures", []) for arch in architectures: if arch in name_to_model: return name_to_model[arch] elif f"TF{arch}" in name_to_model: return name_to_model[f"TF{arch}"] elif f"Flax{arch}" in name_to_model: return name_to_model[f"Flax{arch}"] # If not architecture is set in the config or match the supported models, the first element of the tuple is the # defaults. return supported_models[0] class _BaseAutoModelClass: # Base class for auto models. _model_mapping = None def __init__(self, *args, **kwargs): raise EnvironmentError( f"{self.__class__.__name__} is designed to be instantiated " f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " f"`{self.__class__.__name__}.from_config(config)` methods." ) @classmethod def from_config(cls, config, **kwargs): trust_remote_code = kwargs.pop("trust_remote_code", None) has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map has_local_code = type(config) in cls._model_mapping.keys() trust_remote_code = resolve_trust_remote_code( trust_remote_code, config._name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: class_ref = config.auto_map[cls.__name__] if "--" in class_ref: repo_id, class_ref = class_ref.split("--") else: repo_id = config.name_or_path model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs) if os.path.isdir(config._name_or_path): model_class.register_for_auto_class(cls.__name__) else: cls.register(config.__class__, model_class, exist_ok=True) _ = kwargs.pop("code_revision", None) return model_class._from_config(config, **kwargs) elif type(config) in cls._model_mapping.keys(): model_class = _get_model_class(config, cls._model_mapping) return model_class._from_config(config, **kwargs) raise ValueError( f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True hub_kwargs_names = [ "cache_dir", "force_download", "local_files_only", "proxies", "resume_download", "revision", "subfolder", "use_auth_token", "token", ] hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs} code_revision = kwargs.pop("code_revision", None) commit_hash = kwargs.pop("_commit_hash", None) adapter_kwargs = kwargs.pop("adapter_kwargs", None) token = hub_kwargs.pop("token", None) use_auth_token = hub_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: hub_kwargs["token"] = token if commit_hash is None: if not isinstance(config, PretrainedConfig): # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible resolved_config_file = cached_file( pretrained_model_name_or_path, CONFIG_NAME, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, **hub_kwargs, ) commit_hash = extract_commit_hash(resolved_config_file, commit_hash) else: commit_hash = getattr(config, "_commit_hash", None) if is_peft_available(): if adapter_kwargs is None: adapter_kwargs = {} if token is not None: adapter_kwargs["token"] = token maybe_adapter_path = find_adapter_config_file( pretrained_model_name_or_path, _commit_hash=commit_hash, **adapter_kwargs ) if maybe_adapter_path is not None: with open(maybe_adapter_path, "r", encoding="utf-8") as f: adapter_config = json.load(f) adapter_kwargs["_adapter_model_path"] = pretrained_model_name_or_path pretrained_model_name_or_path = adapter_config["base_model_name_or_path"] if not isinstance(config, PretrainedConfig): kwargs_orig = copy.deepcopy(kwargs) # ensure not to pollute the config object with torch_dtype="auto" - since it's # meaningless in the context of the config object - torch.dtype values are acceptable if kwargs.get("torch_dtype", None) == "auto": _ = kwargs.pop("torch_dtype") # to not overwrite the quantization_config if config has a quantization_config if kwargs.get("quantization_config", None) is not None: _ = kwargs.pop("quantization_config") config, kwargs = AutoConfig.from_pretrained( pretrained_model_name_or_path, return_unused_kwargs=True, trust_remote_code=trust_remote_code, code_revision=code_revision, _commit_hash=commit_hash, **hub_kwargs, **kwargs, ) # if torch_dtype=auto was passed here, ensure to pass it on if kwargs_orig.get("torch_dtype", None) == "auto": kwargs["torch_dtype"] = "auto" if kwargs_orig.get("quantization_config", None) is not None: kwargs["quantization_config"] = kwargs_orig["quantization_config"] has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map has_local_code = type(config) in cls._model_mapping.keys() trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) # Set the adapter kwargs kwargs["adapter_kwargs"] = adapter_kwargs if has_remote_code and trust_remote_code: class_ref = config.auto_map[cls.__name__] model_class = get_class_from_dynamic_module( class_ref, pretrained_model_name_or_path, code_revision=code_revision, **hub_kwargs, **kwargs ) _ = hub_kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): model_class.register_for_auto_class(cls.__name__) else: cls.register(config.__class__, model_class, exist_ok=True) return model_class.from_pretrained( pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs ) elif type(config) in cls._model_mapping.keys(): model_class = _get_model_class(config, cls._model_mapping) return model_class.from_pretrained( pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs ) raise ValueError( f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." ) @classmethod def register(cls, config_class, model_class, exist_ok=False): """ Register a new model for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. model_class ([`PreTrainedModel`]): The model to register. """ if hasattr(model_class, "config_class") and model_class.config_class != config_class: raise ValueError( "The model class you are passing has a `config_class` attribute that is not consistent with the " f"config class you passed (model has {model_class.config_class} and you passed {config_class}. Fix " "one of those so they match!" ) cls._model_mapping.register(config_class, model_class, exist_ok=exist_ok) class _BaseAutoBackboneClass(_BaseAutoModelClass): # Base class for auto backbone models. _model_mapping = None @classmethod def _load_timm_backbone_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): requires_backends(cls, ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig config = kwargs.pop("config", TimmBackboneConfig()) use_timm = kwargs.pop("use_timm_backbone", True) if not use_timm: raise ValueError("`use_timm_backbone` must be `True` for timm backbones") if kwargs.get("out_features", None) is not None: raise ValueError("Cannot specify `out_features` for timm backbones") if kwargs.get("output_loading_info", False): raise ValueError("Cannot specify `output_loading_info=True` when loading from timm") num_channels = kwargs.pop("num_channels", config.num_channels) features_only = kwargs.pop("features_only", config.features_only) use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone) out_indices = kwargs.pop("out_indices", config.out_indices) config = TimmBackboneConfig( backbone=pretrained_model_name_or_path, num_channels=num_channels, features_only=features_only, use_pretrained_backbone=use_pretrained_backbone, out_indices=out_indices, ) return super().from_config(config, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): if kwargs.get("use_timm_backbone", False): return cls._load_timm_backbone_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) def insert_head_doc(docstring, head_doc=""): if len(head_doc) > 0: return docstring.replace( "one of the model classes of the library ", f"one of the model classes of the library (with a {head_doc} head) ", ) return docstring.replace( "one of the model classes of the library ", "one of the base model classes of the library " ) def auto_class_update(cls, checkpoint_for_example="bert-base-cased", head_doc=""): # Create a new class with the right name from the base class model_mapping = cls._model_mapping name = cls.__name__ class_docstring = insert_head_doc(CLASS_DOCSTRING, head_doc=head_doc) cls.__doc__ = class_docstring.replace("BaseAutoModelClass", name) # Now we need to copy and re-register `from_config` and `from_pretrained` as class methods otherwise we can't # have a specific docstrings for them. from_config = copy_func(_BaseAutoModelClass.from_config) from_config_docstring = insert_head_doc(FROM_CONFIG_DOCSTRING, head_doc=head_doc) from_config_docstring = from_config_docstring.replace("BaseAutoModelClass", name) from_config_docstring = from_config_docstring.replace("checkpoint_placeholder", checkpoint_for_example) from_config.__doc__ = from_config_docstring from_config = replace_list_option_in_docstrings(model_mapping._model_mapping, use_model_types=False)(from_config) cls.from_config = classmethod(from_config) if name.startswith("TF"): from_pretrained_docstring = FROM_PRETRAINED_TF_DOCSTRING elif name.startswith("Flax"): from_pretrained_docstring = FROM_PRETRAINED_FLAX_DOCSTRING else: from_pretrained_docstring = FROM_PRETRAINED_TORCH_DOCSTRING from_pretrained = copy_func(_BaseAutoModelClass.from_pretrained) from_pretrained_docstring = insert_head_doc(from_pretrained_docstring, head_doc=head_doc) from_pretrained_docstring = from_pretrained_docstring.replace("BaseAutoModelClass", name) from_pretrained_docstring = from_pretrained_docstring.replace("checkpoint_placeholder", checkpoint_for_example) shortcut = checkpoint_for_example.split("/")[-1].split("-")[0] from_pretrained_docstring = from_pretrained_docstring.replace("shortcut_placeholder", shortcut) from_pretrained.__doc__ = from_pretrained_docstring from_pretrained = replace_list_option_in_docstrings(model_mapping._model_mapping)(from_pretrained) cls.from_pretrained = classmethod(from_pretrained) return cls def get_values(model_mapping): result = [] for model in model_mapping.values(): if isinstance(model, (list, tuple)): result += list(model) else: result.append(model) return result def getattribute_from_module(module, attr): if attr is None: return None if isinstance(attr, tuple): return tuple(getattribute_from_module(module, a) for a in attr) if hasattr(module, attr): return getattr(module, attr) # Some of the mappings have entries model_type -> object of another model type. In that case we try to grab the # object at the top level. transformers_module = importlib.import_module("transformers") if module != transformers_module: try: return getattribute_from_module(transformers_module, attr) except ValueError: raise ValueError(f"Could not find {attr} neither in {module} nor in {transformers_module}!") else: raise ValueError(f"Could not find {attr} in {transformers_module}!") class _LazyAutoMapping(OrderedDict): """ " A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed. Args: - config_mapping: The map model type to config class - model_mapping: The map model type to model (or tokenizer) class """ def __init__(self, config_mapping, model_mapping): self._config_mapping = config_mapping self._reverse_config_mapping = {v: k for k, v in config_mapping.items()} self._model_mapping = model_mapping self._model_mapping._model_mapping = self self._extra_content = {} self._modules = {} def __len__(self): common_keys = set(self._config_mapping.keys()).intersection(self._model_mapping.keys()) return len(common_keys) + len(self._extra_content) def __getitem__(self, key): if key in self._extra_content: return self._extra_content[key] model_type = self._reverse_config_mapping[key.__name__] if model_type in self._model_mapping: model_name = self._model_mapping[model_type] return self._load_attr_from_module(model_type, model_name) # Maybe there was several model types associated with this config. model_types = [k for k, v in self._config_mapping.items() if v == key.__name__] for mtype in model_types: if mtype in self._model_mapping: model_name = self._model_mapping[mtype] return self._load_attr_from_module(mtype, model_name) raise KeyError(key) def _load_attr_from_module(self, model_type, attr): module_name = model_type_to_module_name(model_type) if module_name not in self._modules: self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models") return getattribute_from_module(self._modules[module_name], attr) def keys(self): mapping_keys = [ self._load_attr_from_module(key, name) for key, name in self._config_mapping.items() if key in self._model_mapping.keys() ] return mapping_keys + list(self._extra_content.keys()) def get(self, key, default): try: return self.__getitem__(key) except KeyError: return default def __bool__(self): return bool(self.keys()) def values(self): mapping_values = [ self._load_attr_from_module(key, name) for key, name in self._model_mapping.items() if key in self._config_mapping.keys() ] return mapping_values + list(self._extra_content.values()) def items(self): mapping_items = [ ( self._load_attr_from_module(key, self._config_mapping[key]), self._load_attr_from_module(key, self._model_mapping[key]), ) for key in self._model_mapping.keys() if key in self._config_mapping.keys() ] return mapping_items + list(self._extra_content.items()) def __iter__(self): return iter(self.keys()) def __contains__(self, item): if item in self._extra_content: return True if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping: return False model_type = self._reverse_config_mapping[item.__name__] return model_type in self._model_mapping def register(self, key, value, exist_ok=False): """ Register a new model in this mapping. """ if hasattr(key, "__name__") and key.__name__ in self._reverse_config_mapping: model_type = self._reverse_config_mapping[key.__name__] if model_type in self._model_mapping.keys() and not exist_ok: raise ValueError(f"'{key}' is already used by a Transformers model.") self._extra_content[key] = value