# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ALIGN checkpoints from the original repository.""" import argparse import os import align import numpy as np import requests import tensorflow as tf import torch from PIL import Image from tokenizer import Tokenizer from transformers import ( AlignConfig, AlignModel, AlignProcessor, BertConfig, BertTokenizer, EfficientNetConfig, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def preprocess(image): image = tf.image.resize(image, (346, 346)) image = tf.image.crop_to_bounding_box(image, (346 - 289) // 2, (346 - 289) // 2, 289, 289) return image def get_align_config(): vision_config = EfficientNetConfig.from_pretrained("google/efficientnet-b7") vision_config.image_size = 289 vision_config.hidden_dim = 640 vision_config.id2label = {"0": "LABEL_0", "1": "LABEL_1"} vision_config.label2id = {"LABEL_0": 0, "LABEL_1": 1} vision_config.depthwise_padding = [] text_config = BertConfig() config = AlignConfig.from_text_vision_configs( text_config=text_config, vision_config=vision_config, projection_dim=640 ) return config # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def get_processor(): image_processor = EfficientNetImageProcessor( do_center_crop=True, rescale_factor=1 / 127.5, rescale_offset=True, do_normalize=False, include_top=False, resample=Image.BILINEAR, ) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") tokenizer.model_max_length = 64 processor = AlignProcessor(image_processor=image_processor, tokenizer=tokenizer) return processor # here we list all keys to be renamed (original name on the left, our name on the right) def rename_keys(original_param_names): # EfficientNet image encoder block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")] block_names = list(set(block_names)) block_names = sorted(block_names) num_blocks = len(block_names) block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))} rename_keys = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight")) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight")) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias")) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean")) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var")) for b in block_names: hf_b = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight")) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight")) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias")) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight")) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias")) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight")) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias")) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight")) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias")) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight")) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias")) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) key_mapping = {} for item in rename_keys: if item[0] in original_param_names: key_mapping[item[0]] = "vision_model." + item[1] # BERT text encoder rename_keys = [] old = "tf_bert_model/bert" new = "text_model" for i in range(12): rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/self/query/kernel:0", f"{new}.encoder.layer.{i}.attention.self.query.weight", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/self/query/bias:0", f"{new}.encoder.layer.{i}.attention.self.query.bias", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/self/key/kernel:0", f"{new}.encoder.layer.{i}.attention.self.key.weight", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/self/key/bias:0", f"{new}.encoder.layer.{i}.attention.self.key.bias", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/self/value/kernel:0", f"{new}.encoder.layer.{i}.attention.self.value.weight", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/self/value/bias:0", f"{new}.encoder.layer.{i}.attention.self.value.bias", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/output/dense/kernel:0", f"{new}.encoder.layer.{i}.attention.output.dense.weight", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/output/dense/bias:0", f"{new}.encoder.layer.{i}.attention.output.dense.bias", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/gamma:0", f"{new}.encoder.layer.{i}.attention.output.LayerNorm.weight", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/beta:0", f"{new}.encoder.layer.{i}.attention.output.LayerNorm.bias", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/intermediate/dense/kernel:0", f"{new}.encoder.layer.{i}.intermediate.dense.weight", ) ) rename_keys.append( ( f"{old}/encoder/layer_._{i}/intermediate/dense/bias:0", f"{new}.encoder.layer.{i}.intermediate.dense.bias", ) ) rename_keys.append( (f"{old}/encoder/layer_._{i}/output/dense/kernel:0", f"{new}.encoder.layer.{i}.output.dense.weight") ) rename_keys.append( (f"{old}/encoder/layer_._{i}/output/dense/bias:0", f"{new}.encoder.layer.{i}.output.dense.bias") ) rename_keys.append( (f"{old}/encoder/layer_._{i}/output/LayerNorm/gamma:0", f"{new}.encoder.layer.{i}.output.LayerNorm.weight") ) rename_keys.append( (f"{old}/encoder/layer_._{i}/output/LayerNorm/beta:0", f"{new}.encoder.layer.{i}.output.LayerNorm.bias") ) rename_keys.append((f"{old}/embeddings/word_embeddings/weight:0", f"{new}.embeddings.word_embeddings.weight")) rename_keys.append( (f"{old}/embeddings/position_embeddings/embeddings:0", f"{new}.embeddings.position_embeddings.weight") ) rename_keys.append( (f"{old}/embeddings/token_type_embeddings/embeddings:0", f"{new}.embeddings.token_type_embeddings.weight") ) rename_keys.append((f"{old}/embeddings/LayerNorm/gamma:0", f"{new}.embeddings.LayerNorm.weight")) rename_keys.append((f"{old}/embeddings/LayerNorm/beta:0", f"{new}.embeddings.LayerNorm.bias")) rename_keys.append((f"{old}/pooler/dense/kernel:0", f"{new}.pooler.dense.weight")) rename_keys.append((f"{old}/pooler/dense/bias:0", f"{new}.pooler.dense.bias")) rename_keys.append(("dense/kernel:0", "text_projection.weight")) rename_keys.append(("dense/bias:0", "text_projection.bias")) rename_keys.append(("dense/bias:0", "text_projection.bias")) rename_keys.append(("temperature:0", "temperature")) for item in rename_keys: if item[0] in original_param_names: key_mapping[item[0]] = item[1] return key_mapping def replace_params(hf_params, tf_params, key_mapping): list(hf_params.keys()) for key, value in tf_params.items(): if key not in key_mapping: continue hf_key = key_mapping[key] if "_conv" in key and "kernel" in key: new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1) elif "embeddings" in key: new_hf_value = torch.from_numpy(value) elif "depthwise_kernel" in key: new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1) elif "kernel" in key: new_hf_value = torch.from_numpy(np.transpose(value)) elif "temperature" in key: new_hf_value = value elif "bn/gamma" or "bn/beta" in key: new_hf_value = torch.from_numpy(np.transpose(value)).squeeze() else: new_hf_value = torch.from_numpy(value) # Replace HF parameters with original TF model parameters hf_params[hf_key].copy_(new_hf_value) @torch.no_grad() def convert_align_checkpoint(checkpoint_path, pytorch_dump_folder_path, save_model, push_to_hub): """ Copy/paste/tweak model's weights to our ALIGN structure. """ # Load original model seq_length = 64 tok = Tokenizer(seq_length) original_model = align.Align("efficientnet-b7", "bert-base", 640, seq_length, tok.get_vocab_size()) original_model.compile() original_model.load_weights(checkpoint_path) tf_params = original_model.trainable_variables tf_non_train_params = original_model.non_trainable_variables tf_params = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: tf_params[param.name] = param.numpy() tf_param_names = list(tf_params.keys()) # Load HuggingFace model config = get_align_config() hf_model = AlignModel(config).eval() hf_params = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters...") key_mapping = rename_keys(tf_param_names) replace_params(hf_params, tf_params, key_mapping) # Initialize processor processor = get_processor() inputs = processor( images=prepare_img(), text="A picture of a cat", padding="max_length", max_length=64, return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): outputs = hf_model(**inputs) hf_image_features = outputs.image_embeds.detach().numpy() hf_text_features = outputs.text_embeds.detach().numpy() # Original model inference original_model.trainable = False tf_image_processor = EfficientNetImageProcessor( do_center_crop=True, do_rescale=False, do_normalize=False, include_top=False, resample=Image.BILINEAR, ) image = tf_image_processor(images=prepare_img(), return_tensors="tf", data_format="channels_last")["pixel_values"] text = tok(tf.constant(["A picture of a cat"])) image_features = original_model.image_encoder(image, training=False) text_features = original_model.text_encoder(text, training=False) image_features = tf.nn.l2_normalize(image_features, axis=-1) text_features = tf.nn.l2_normalize(text_features, axis=-1) # Check whether original and HF model outputs match -> np.allclose if not np.allclose(image_features, hf_image_features, atol=1e-3): raise ValueError("The predicted image features are not the same.") if not np.allclose(text_features, hf_text_features, atol=1e-3): raise ValueError("The predicted text features are not the same.") print("Model outputs match!") if save_model: # Create folder to save model if not os.path.isdir(pytorch_dump_folder_path): os.mkdir(pytorch_dump_folder_path) # Save converted model and image processor hf_model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: # Push model and image processor to hub print("Pushing converted ALIGN to the hub...") processor.push_to_hub("align-base") hf_model.push_to_hub("align-base") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_path", default="./weights/model-weights", type=str, help="Path to the pretrained TF ALIGN checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") args = parser.parse_args() convert_align_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)