# coding=utf-8 # Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_albert import AlbertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "albert-base-v2" _CONFIG_FOR_DOC = "AlbertConfig" @flax.struct.dataclass class FlaxAlbertForPreTrainingOutput(ModelOutput): """ Output type of [`FlaxAlbertForPreTraining`]. Args: prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). sop_logits (`jnp.ndarray` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_logits: jnp.ndarray = None sop_logits: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None ALBERT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ ALBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxAlbertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.embedding_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.embedding_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.embedding_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, position_ids, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxAlbertSelfAttention(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False): head_dim = self.config.hidden_size // self.config.num_attention_heads query_states = self.query(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) value_states = self.value(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) key_states = self.key(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) projected_attn_output = self.dense(attn_output) projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic) layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states) outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,) return outputs class FlaxAlbertLayer(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxAlbertSelfAttention(self.config, dtype=self.dtype) self.ffn = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] self.ffn_output = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, ): attention_outputs = self.attention( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions ) attention_output = attention_outputs[0] ffn_output = self.ffn(attention_output) ffn_output = self.activation(ffn_output) ffn_output = self.ffn_output(ffn_output) ffn_output = self.dropout(ffn_output, deterministic=deterministic) hidden_states = self.full_layer_layer_norm(ffn_output + attention_output) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) return outputs class FlaxAlbertLayerCollection(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num) ] def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, ): layer_hidden_states = () layer_attentions = () for layer_index, albert_layer in enumerate(self.layers): layer_output = albert_layer( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, ) hidden_states = layer_output[0] if output_attentions: layer_attentions = layer_attentions + (layer_output[1],) if output_hidden_states: layer_hidden_states = layer_hidden_states + (hidden_states,) outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (layer_hidden_states,) if output_attentions: outputs = outputs + (layer_attentions,) return outputs # last-layer hidden state, (layer hidden states), (layer attentions) class FlaxAlbertLayerCollections(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation layer_index: Optional[str] = None def setup(self): self.albert_layers = FlaxAlbertLayerCollection(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, ): outputs = self.albert_layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) return outputs class FlaxAlbertLayerGroups(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_groups) ] def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = (hidden_states,) if output_hidden_states else None for i in range(self.config.num_hidden_layers): # Index of the hidden group group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.layers[group_idx]( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) hidden_states = layer_group_output[0] if output_attentions: all_attentions = all_attentions + layer_group_output[-1] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxAlbertEncoder(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embedding_hidden_mapping_in = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.albert_layer_groups = FlaxAlbertLayerGroups(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embedding_hidden_mapping_in(hidden_states) return self.albert_layer_groups( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) class FlaxAlbertOnlyMLMHead(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype) self.activation = ACT2FN[self.config.hidden_act] self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.LayerNorm(hidden_states) if shared_embedding is not None: hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: hidden_states = self.decoder(hidden_states) hidden_states += self.bias return hidden_states class FlaxAlbertSOPHead(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dropout = nn.Dropout(self.config.classifier_dropout_prob) self.classifier = nn.Dense(2, dtype=self.dtype) def __call__(self, pooled_output, deterministic=True): pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) return logits class FlaxAlbertPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = AlbertConfig base_model_prefix = "albert" module_class: nn.Module = None def __init__( self, config: AlbertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.zeros_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, return_dict=False )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxAlbertModule(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True def setup(self): self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxAlbertEncoder(self.config, dtype=self.dtype) if self.add_pooling_layer: self.pooler = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, name="pooler", ) self.pooler_activation = nn.tanh else: self.pooler = None self.pooler_activation = None def __call__( self, input_ids, attention_mask, token_type_ids: Optional[np.ndarray] = None, position_ids: Optional[np.ndarray] = None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # make sure `token_type_ids` is correctly initialized when not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) # make sure `position_ids` is correctly initialized when not passed if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic) outputs = self.encoder( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.add_pooling_layer: pooled = self.pooler(hidden_states[:, 0]) pooled = self.pooler_activation(pooled) else: pooled = None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBaseModelOutputWithPooling( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "The bare Albert Model transformer outputting raw hidden-states without any specific head on top.", ALBERT_START_DOCSTRING, ) class FlaxAlbertModel(FlaxAlbertPreTrainedModel): module_class = FlaxAlbertModule append_call_sample_docstring(FlaxAlbertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) class FlaxAlbertForPreTrainingModule(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype) self.sop_classifier = FlaxAlbertSOPHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.albert( input_ids, attention_mask, token_type_ids, position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.tie_word_embeddings: shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None hidden_states = outputs[0] pooled_output = outputs[1] prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding) sop_scores = self.sop_classifier(pooled_output, deterministic=deterministic) if not return_dict: return (prediction_scores, sop_scores) + outputs[2:] return FlaxAlbertForPreTrainingOutput( prediction_logits=prediction_scores, sop_logits=sop_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `sentence order prediction (classification)` head. """, ALBERT_START_DOCSTRING, ) class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel): module_class = FlaxAlbertForPreTrainingModule FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") >>> model = FlaxAlbertForPreTraining.from_pretrained("albert-base-v2") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.sop_logits ``` """ overwrite_call_docstring( FlaxAlbertForPreTraining, ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING, ) append_replace_return_docstrings( FlaxAlbertForPreTraining, output_type=FlaxAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC ) class FlaxAlbertForMaskedLMModule(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.albert = FlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype) self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.albert( input_ids, attention_mask, token_type_ids, position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.predictions(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING) class FlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel): module_class = FlaxAlbertForMaskedLMModule append_call_sample_docstring(FlaxAlbertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) class FlaxAlbertForSequenceClassificationModule(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) classifier_dropout = ( self.config.classifier_dropout_prob if self.config.classifier_dropout_prob is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense( self.config.num_labels, dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.albert( input_ids, attention_mask, token_type_ids, position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) if not return_dict: return (logits,) + outputs[2:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ALBERT_START_DOCSTRING, ) class FlaxAlbertForSequenceClassification(FlaxAlbertPreTrainedModel): module_class = FlaxAlbertForSequenceClassificationModule append_call_sample_docstring( FlaxAlbertForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxAlbertForMultipleChoiceModule(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None # Model outputs = self.albert( input_ids, attention_mask, token_type_ids, position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ALBERT_START_DOCSTRING, ) class FlaxAlbertForMultipleChoice(FlaxAlbertPreTrainedModel): module_class = FlaxAlbertForMultipleChoiceModule overwrite_call_docstring( FlaxAlbertForMultipleChoice, ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxAlbertForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) class FlaxAlbertForTokenClassificationModule(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) classifier_dropout = ( self.config.classifier_dropout_prob if self.config.classifier_dropout_prob is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.albert( input_ids, attention_mask, token_type_ids, position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ALBERT_START_DOCSTRING, ) class FlaxAlbertForTokenClassification(FlaxAlbertPreTrainedModel): module_class = FlaxAlbertForTokenClassificationModule append_call_sample_docstring( FlaxAlbertForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxAlbertForQuestionAnsweringModule(nn.Module): config: AlbertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.albert( input_ids, attention_mask, token_type_ids, position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.qa_outputs(hidden_states) start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ALBERT_START_DOCSTRING, ) class FlaxAlbertForQuestionAnswering(FlaxAlbertPreTrainedModel): module_class = FlaxAlbertForQuestionAnsweringModule append_call_sample_docstring( FlaxAlbertForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, )