#include "cuda_kernel.h" ////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////// __global__ void index_max_cuda_kernel( float *index_vals, // [batch_size, 32, num_block] int *indices, // [batch_size, num_block] float *max_vals, // [batch_size, A_num_block * 32] float *max_vals_scatter, // [batch_size, 32, num_block] long batch_size, long A_num_block, long B_num_block, long num_block ) { long batch_idx = blockIdx.x; long thread_idx = threadIdx.x; long num_thread = blockDim.x; extern __shared__ float buffer[]; int *max_buffer = (int*)buffer; for (int i = 0; i < A_num_block * 32; i = i + num_thread) { int idx = i + thread_idx; if (idx < A_num_block * 32) { max_buffer[idx] = -1e8; } } __syncthreads(); int *indices_pt = &indices[batch_idx * num_block]; float *index_vals_pt = &index_vals[batch_idx * num_block * 32]; for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) { int idx = idx_start + thread_idx; int A_block_idx = indices_pt[idx % num_block] / B_num_block; atomicMax(&max_buffer[A_block_idx * 32 + idx / num_block], (int)(index_vals_pt[idx] * 1000)); } __syncthreads(); float *max_vals_pt = &max_vals[batch_idx * A_num_block * 32]; for (int i = 0; i < A_num_block * 32; i = i + num_thread) { int idx = i + thread_idx; if (idx < A_num_block * 32) { max_vals_pt[idx] = (float)max_buffer[idx] / 1000.; } } float *max_vals_scatter_pt = &max_vals_scatter[batch_idx * num_block * 32]; for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) { int idx = idx_start + thread_idx; int A_block_idx = indices_pt[idx % num_block] / B_num_block; max_vals_scatter_pt[idx] = (float)max_buffer[A_block_idx * 32 + idx / num_block] / 1000.; } } __global__ void mm_to_sparse_cuda_kernel( float *dense_A, // [batch_size, A_num_block, dim, 32] float *dense_B, // [batch_size, B_num_block, dim, 32] int *indices, // [batch_size, num_block] float *sparse_C, // [batch_size, num_block, 32, 32] long batch_size, long A_num_block, long B_num_block, long dim, long num_block ) { long batch_idx = blockIdx.y; long block_idx = blockIdx.x * blockDim.y + threadIdx.y; long thread_idx = threadIdx.x; __shared__ float buffer[4096]; float *A_buffer = &buffer[threadIdx.y * 1024]; // [2, 8, 32] float *B_buffer = &buffer[threadIdx.y * 1024 + 512]; // [2, 8, 32] long batch_idx__block_idx = batch_idx * num_block + block_idx; long AB_block_idx = indices[batch_idx__block_idx]; float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * dim * 32]; float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * dim * 32]; int reg_1_idx = thread_idx / 8; // [0000000011111111222222223333333344444444555555556666666677777777] int reg_2_idx = thread_idx % 8; // [0123456701234567012345670123456701234567012345670123456701234567] float reg_1[8]; float reg_2[8]; float reg_array[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; #pragma unroll for (int i = 0; i < 4; i++) { A_buffer[i * 64 + thread_idx] = dense_A_pt[i * 64 + thread_idx]; B_buffer[i * 64 + thread_idx] = dense_B_pt[i * 64 + thread_idx]; } __syncthreads(); #pragma unroll for (int i = 0; i < 4; i++) { reg_1[i] = A_buffer[reg_1_idx * 4 + i]; reg_2[i] = B_buffer[reg_2_idx * 4 + i]; } for (int dim_stride = 1; dim_stride < (dim / 8); dim_stride++) { #pragma unroll for (int i = 0; i < 4; i++) { A_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_A_pt[dim_stride * 256 + i * 64 + thread_idx]; B_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_B_pt[dim_stride * 256 + i * 64 + thread_idx]; } #pragma unroll for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) { #pragma unroll for (int i = 0; i < 4; i++) { reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_1_idx * 4 + i]; reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_2_idx * 4 + i]; } #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j]; } } } __syncthreads(); #pragma unroll for (int i = 0; i < 4; i++) { reg_1[i] = A_buffer[(dim_stride % 2) * 256 + reg_1_idx * 4 + i]; reg_2[i] = B_buffer[(dim_stride % 2) * 256 + reg_2_idx * 4 + i]; } #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j]; } } } #pragma unroll for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) { #pragma unroll for (int i = 0; i < 4; i++) { reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[256 + mini_dim_idx * 32 + reg_1_idx * 4 + i]; reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[256 + mini_dim_idx * 32 + reg_2_idx * 4 + i]; } #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j]; } } } #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j]; } } __syncthreads(); float *C_buffer = &buffer[threadIdx.y * 1024]; // [32, 32] #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { C_buffer[(reg_2_idx * 4 + j) * 32 + reg_1_idx * 4 + i] = reg_array[i * 4 + j]; } } __syncthreads(); float *sparse_C_pt = &sparse_C[batch_idx__block_idx * 1024]; #pragma unroll for (int i = 0; i < 16; i++) { sparse_C_pt[i * 64 + thread_idx] = C_buffer[i * 64 + thread_idx]; } } __global__ void sparse_dense_mm_cuda_kernel( float *sparse_A, // [batch_size, num_block, 32, 32] int *indices, // [batch_size, num_block] float *dense_B, // [batch_size, B_num_block, dim, 32] float *dense_C, // [batch_size, A_num_block, dim, 32] long batch_size, long A_num_block, long B_num_block, long dim, long num_block ) { long batch_idx = blockIdx.y; long block_idx = blockIdx.x * blockDim.y + threadIdx.y; long thread_idx = threadIdx.x; __shared__ float buffer[6144]; float *A_buffer = &buffer[threadIdx.y * 3072]; // [32, 32] float *B_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [32, 64] long batch_idx__block_idx = batch_idx * num_block + block_idx; float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024]; #pragma unroll for (int i = 0; i < 8; i++) { A_buffer[i * 128 + thread_idx] = sparse_A_pt[i * 128 + thread_idx]; } long AB_block_idx = indices[batch_idx__block_idx]; float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * 32 * dim]; float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32 * dim]; // [0000000011111111222222223333333344444444555555556666666677777777] // [0123456701234567012345670123456701234567012345670123456701234567] int reg_1_idx = thread_idx / 8; int reg_2_idx = thread_idx % 8; float reg_1[8]; float reg_2[8]; float reg_array[16]; for (int dim_stride = 0; dim_stride < dim; dim_stride = dim_stride + 64) { #pragma unroll for (int i = 0; i < 16; i++) { B_buffer[i * 128 + thread_idx] = dense_B_pt[dim_stride * 32 + i * 128 + thread_idx]; } #pragma unroll for (int i = 0; i < 16; i++) { reg_array[i] = 0; } __syncthreads(); #pragma unroll for (int i = 0; i < 4; i++) { reg_1[i] = B_buffer[(reg_1_idx * 4 + i) * 32]; reg_2[i] = A_buffer[reg_2_idx * 4 + i]; } #pragma unroll for (int mini_dim_idx = 1; mini_dim_idx < 32; mini_dim_idx++) { #pragma unroll for (int i = 0; i < 4; i++) { reg_1[(mini_dim_idx % 2) * 4 + i] = B_buffer[(reg_1_idx * 4 + i) * 32 + mini_dim_idx]; reg_2[(mini_dim_idx % 2) * 4 + i] = A_buffer[mini_dim_idx * 32 + reg_2_idx * 4 + i]; } #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j]; } } } #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j]; } } __syncthreads(); float *C_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [64, 32] #pragma unroll for (int i = 0; i < 4; i++) { #pragma unroll for (int j = 0; j < 4; j++) { C_buffer[(reg_1_idx * 4 + i) * 32 + reg_2_idx * 4 + j] = reg_array[i * 4 + j]; } } __syncthreads(); #pragma unroll for (int i = 0; i < 16; i++) { atomicAdd(&dense_C_pt[dim_stride * 32 + i * 128 + thread_idx], C_buffer[i * 128 + thread_idx]); } __syncthreads(); } } __global__ void reduce_sum_cuda_kernel( float *sparse_A, // [batch_size, num_block, 32, 32] int *indices, // [batch_size, num_block] float *dense_C, // [batch_size, A_num_block, 32] long batch_size, long A_num_block, long B_num_block, long num_block ) { long batch_idx = blockIdx.y; long block_idx = blockIdx.x * blockDim.y + threadIdx.y; long thread_idx = threadIdx.x; long batch_idx__block_idx = batch_idx * num_block + block_idx; long AB_block_idx = indices[batch_idx__block_idx]; float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024]; float reg_array[16]; float value = 0; #pragma unroll for (int i = 0; i < 8; i++) { reg_array[i] = sparse_A_pt[i * 32 + thread_idx]; } #pragma unroll for (int stride = 8; stride < 32; stride = stride + 8) { #pragma unroll for (int i = 0; i < 8; i++) { reg_array[(stride + i) % 16] = sparse_A_pt[(stride + i) * 32 + thread_idx]; } #pragma unroll for (int i = 0; i < 8; i++) { value = value + reg_array[(stride - 8 + i) % 16]; } } #pragma unroll for (int i = 0; i < 8; i++) { value = value + reg_array[8 + i]; } float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32]; atomicAdd(&dense_C_pt[thread_idx], value); } __global__ void scatter_cuda_kernel( float *dense_A, // [batch_size, A_num_block, 32] int *indices, // [batch_size, num_block] float *sparse_C, // [batch_size, num_block, 32, 32] long batch_size, long A_num_block, long B_num_block, long num_block ) { long batch_idx = blockIdx.y; long block_idx = blockIdx.x * blockDim.y + threadIdx.y; long thread_idx = threadIdx.x; long batch_idx__block_idx = batch_idx * num_block + block_idx; long AB_block_idx = indices[batch_idx__block_idx]; float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32]; float *sparse_C_pt = &sparse_C[(batch_idx * num_block + block_idx) * 1024]; float value = dense_A_pt[thread_idx]; #pragma unroll for (int i = 0; i < 32; i++) { sparse_C_pt[i * 32 + thread_idx] = value; } }