# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ import copy import math import torch import torch.nn.functional as F from torch import Tensor, nn def _get_clones(module, N, layer_share=False): # import ipdb; ipdb.set_trace() if layer_share: return nn.ModuleList([module for i in range(N)]) else: return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def get_sine_pos_embed( pos_tensor: torch.Tensor, num_pos_feats: int = 128, temperature: int = 10000, exchange_xy: bool = True, ): """generate sine position embedding from a position tensor Args: pos_tensor (torch.Tensor): shape: [..., n]. num_pos_feats (int): projected shape for each float in the tensor. temperature (int): temperature in the sine/cosine function. exchange_xy (bool, optional): exchange pos x and pos y. \ For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True. Returns: pos_embed (torch.Tensor): shape: [..., n*num_pos_feats]. """ scale = 2 * math.pi dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device) dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats) def sine_func(x: torch.Tensor): sin_x = x * scale / dim_t sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2) return sin_x pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)] if exchange_xy: pos_res[0], pos_res[1] = pos_res[1], pos_res[0] pos_res = torch.cat(pos_res, dim=-1) return pos_res def gen_encoder_output_proposals( memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None ): """ Input: - memory: bs, \sum{hw}, d_model - memory_padding_mask: bs, \sum{hw} - spatial_shapes: nlevel, 2 - learnedwh: 2 Output: - output_memory: bs, \sum{hw}, d_model - output_proposals: bs, \sum{hw}, 4 """ N_, S_, C_ = memory.shape proposals = [] _cur = 0 for lvl, (H_, W_) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) # import ipdb; ipdb.set_trace() grid_y, grid_x = torch.meshgrid( torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device), ) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2 scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale if learnedwh is not None: # import ipdb; ipdb.set_trace() wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl) else: wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) # scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1) # grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale # wh = torch.ones_like(grid) / scale proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) proposals.append(proposal) _cur += H_ * W_ # import ipdb; ipdb.set_trace() output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all( -1, keepdim=True ) output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf")) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf")) output_memory = memory output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) # output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) # output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf')) return output_memory, output_proposals class RandomBoxPerturber: def __init__( self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2 ) -> None: self.noise_scale = torch.Tensor( [x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale] ) def __call__(self, refanchors: Tensor) -> Tensor: nq, bs, query_dim = refanchors.shape device = refanchors.device noise_raw = torch.rand_like(refanchors) noise_scale = self.noise_scale.to(device)[:query_dim] new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale) return new_refanchors.clamp_(0, 1) def sigmoid_focal_loss( inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False ): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss if no_reduction: return loss return loss.mean(1).sum() / num_boxes class MLP(nn.Module): """Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def _get_activation_fn(activation, d_model=256, batch_dim=0): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu if activation == "prelu": return nn.PReLU() if activation == "selu": return F.selu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") def gen_sineembed_for_position(pos_tensor): # n_query, bs, _ = pos_tensor.size() # sineembed_tensor = torch.zeros(n_query, bs, 256) scale = 2 * math.pi dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.size(-1) == 2: pos = torch.cat((pos_y, pos_x), dim=2) elif pos_tensor.size(-1) == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) return pos class ContrastiveEmbed(nn.Module): def __init__(self, max_text_len=256): """ Args: max_text_len: max length of text. """ super().__init__() self.max_text_len = max_text_len def forward(self, x, text_dict): """_summary_ Args: x (_type_): _description_ text_dict (_type_): _description_ { 'encoded_text': encoded_text, # bs, 195, d_model 'text_token_mask': text_token_mask, # bs, 195 # True for used tokens. False for padding tokens } Returns: _type_: _description_ """ assert isinstance(text_dict, dict) y = text_dict["encoded_text"] text_token_mask = text_dict["text_token_mask"] res = x @ y.transpose(-1, -2) res.masked_fill_(~text_token_mask[:, None, :], float("-inf")) # padding to max_text_len new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device) new_res[..., : res.shape[-1]] = res return new_res