# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import DropPath class FeatureResizer(nn.Module): """ This class takes as input a set of embeddings of dimension C1 and outputs a set of embedding of dimension C2, after a linear transformation, dropout and normalization (LN). """ def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True): super().__init__() self.do_ln = do_ln # Object feature encoding self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) self.dropout = nn.Dropout(dropout) def forward(self, encoder_features): x = self.fc(encoder_features) if self.do_ln: x = self.layer_norm(x) output = self.dropout(x) return output def l1norm(X, dim, eps=1e-8): """L1-normalize columns of X""" norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps X = torch.div(X, norm) return X def l2norm(X, dim, eps=1e-8): """L2-normalize columns of X""" norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8): """ query: (n_context, queryL, d) context: (n_context, sourceL, d) """ batch_size_q, queryL = query.size(0), query.size(1) batch_size, sourceL = context.size(0), context.size(1) # Get attention # --> (batch, d, queryL) queryT = torch.transpose(query, 1, 2) # (batch, sourceL, d)(batch, d, queryL) # --> (batch, sourceL, queryL) attn = torch.bmm(context, queryT) if raw_feature_norm == "softmax": # --> (batch*sourceL, queryL) attn = attn.view(batch_size * sourceL, queryL) attn = nn.Softmax()(attn) # --> (batch, sourceL, queryL) attn = attn.view(batch_size, sourceL, queryL) elif raw_feature_norm == "l2norm": attn = l2norm(attn, 2) elif raw_feature_norm == "clipped_l2norm": attn = nn.LeakyReLU(0.1)(attn) attn = l2norm(attn, 2) else: raise ValueError("unknown first norm type:", raw_feature_norm) # --> (batch, queryL, sourceL) attn = torch.transpose(attn, 1, 2).contiguous() # --> (batch*queryL, sourceL) attn = attn.view(batch_size * queryL, sourceL) attn = nn.Softmax()(attn * smooth) # --> (batch, queryL, sourceL) attn = attn.view(batch_size, queryL, sourceL) # --> (batch, sourceL, queryL) attnT = torch.transpose(attn, 1, 2).contiguous() # --> (batch, d, sourceL) contextT = torch.transpose(context, 1, 2) # (batch x d x sourceL)(batch x sourceL x queryL) # --> (batch, d, queryL) weightedContext = torch.bmm(contextT, attnT) # --> (batch, queryL, d) weightedContext = torch.transpose(weightedContext, 1, 2) return weightedContext, attnT class BiMultiHeadAttention(nn.Module): def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None): super(BiMultiHeadAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.v_dim = v_dim self.l_dim = l_dim assert ( self.head_dim * self.num_heads == self.embed_dim ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." self.scale = self.head_dim ** (-0.5) self.dropout = dropout self.v_proj = nn.Linear(self.v_dim, self.embed_dim) self.l_proj = nn.Linear(self.l_dim, self.embed_dim) self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim) self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim) self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim) self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim) self.stable_softmax_2d = True self.clamp_min_for_underflow = True self.clamp_max_for_overflow = True self._reset_parameters() def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def _reset_parameters(self): nn.init.xavier_uniform_(self.v_proj.weight) self.v_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.l_proj.weight) self.l_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.values_v_proj.weight) self.values_v_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.values_l_proj.weight) self.values_l_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.out_v_proj.weight) self.out_v_proj.bias.data.fill_(0) nn.init.xavier_uniform_(self.out_l_proj.weight) self.out_l_proj.bias.data.fill_(0) def forward(self, v, l, attention_mask_v=None, attention_mask_l=None): """_summary_ Args: v (_type_): bs, n_img, dim l (_type_): bs, n_text, dim attention_mask_v (_type_, optional): _description_. bs, n_img attention_mask_l (_type_, optional): _description_. bs, n_text Returns: _type_: _description_ """ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() bsz, tgt_len, _ = v.size() query_states = self.v_proj(v) * self.scale key_states = self._shape(self.l_proj(l), -1, bsz) value_v_states = self._shape(self.values_v_proj(v), -1, bsz) value_l_states = self._shape(self.values_l_proj(l), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_v_states = value_v_states.view(*proj_shape) value_l_states = value_l_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" ) if self.stable_softmax_2d: attn_weights = attn_weights - attn_weights.max() if self.clamp_min_for_underflow: attn_weights = torch.clamp( attn_weights, min=-50000 ) # Do not increase -50000, data type half has quite limited range if self.clamp_max_for_overflow: attn_weights = torch.clamp( attn_weights, max=50000 ) # Do not increase 50000, data type half has quite limited range attn_weights_T = attn_weights.transpose(1, 2) attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0] if self.clamp_min_for_underflow: attn_weights_l = torch.clamp( attn_weights_l, min=-50000 ) # Do not increase -50000, data type half has quite limited range if self.clamp_max_for_overflow: attn_weights_l = torch.clamp( attn_weights_l, max=50000 ) # Do not increase 50000, data type half has quite limited range # mask vison for language if attention_mask_v is not None: attention_mask_v = ( attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1) ) attn_weights_l.masked_fill_(attention_mask_v, float("-inf")) attn_weights_l = attn_weights_l.softmax(dim=-1) # mask language for vision if attention_mask_l is not None: attention_mask_l = ( attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1) ) attn_weights.masked_fill_(attention_mask_l, float("-inf")) attn_weights_v = attn_weights.softmax(dim=-1) attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training) attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training) attn_output_v = torch.bmm(attn_probs_v, value_l_states) attn_output_l = torch.bmm(attn_probs_l, value_v_states) if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}" ) if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim): raise ValueError( f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}" ) attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output_v = attn_output_v.transpose(1, 2) attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim) attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim) attn_output_l = attn_output_l.transpose(1, 2) attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim) attn_output_v = self.out_v_proj(attn_output_v) attn_output_l = self.out_l_proj(attn_output_l) return attn_output_v, attn_output_l # Bi-Direction MHA (text->image, image->text) class BiAttentionBlock(nn.Module): def __init__( self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, drop_path=0.0, init_values=1e-4, cfg=None, ): """ Inputs: embed_dim - Dimensionality of input and attention feature vectors hidden_dim - Dimensionality of hidden layer in feed-forward network (usually 2-4x larger than embed_dim) num_heads - Number of heads to use in the Multi-Head Attention block dropout - Amount of dropout to apply in the feed-forward network """ super(BiAttentionBlock, self).__init__() # pre layer norm self.layer_norm_v = nn.LayerNorm(v_dim) self.layer_norm_l = nn.LayerNorm(l_dim) self.attn = BiMultiHeadAttention( v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout ) # add layer scale for training stability self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) def forward(self, v, l, attention_mask_v=None, attention_mask_l=None): v = self.layer_norm_v(v) l = self.layer_norm_l(l) delta_v, delta_l = self.attn( v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l ) # v, l = v + delta_v, l + delta_l v = v + self.drop_path(self.gamma_v * delta_v) l = l + self.drop_path(self.gamma_l * delta_l) return v, l # def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)