Spaces:
Running
on
T4
Running
on
T4
import enum | |
import warnings | |
from ..tokenization_utils import TruncationStrategy | |
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_tf_available(): | |
import tensorflow as tf | |
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES | |
if is_torch_available(): | |
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES | |
logger = logging.get_logger(__name__) | |
class ReturnType(enum.Enum): | |
TENSORS = 0 | |
TEXT = 1 | |
class Text2TextGenerationPipeline(Pipeline): | |
""" | |
Pipeline for text to text generation using seq2seq models. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> generator = pipeline(model="mrm8488/t5-base-finetuned-question-generation-ap") | |
>>> generator( | |
... "answer: Manuel context: Manuel has created RuPERTa-base with the support of HF-Transformers and Google" | |
... ) | |
[{'generated_text': 'question: Who created the RuPERTa-base?'}] | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text | |
generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about | |
text generation parameters in [Text generation strategies](../generation_strategies) and [Text | |
generation](text_generation). | |
This Text2TextGenerationPipeline pipeline can currently be loaded from [`pipeline`] using the following task | |
identifier: `"text2text-generation"`. | |
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the | |
up-to-date list of available models on | |
[huggingface.co/models](https://huggingface.co/models?filter=text2text-generation). For a list of available | |
parameters, see the [following | |
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) | |
Usage: | |
```python | |
text2text_generator = pipeline("text2text-generation") | |
text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") | |
```""" | |
# Used in the return key of the pipeline. | |
return_name = "generated" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.check_model_type( | |
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES | |
if self.framework == "tf" | |
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES | |
) | |
def _sanitize_parameters( | |
self, | |
return_tensors=None, | |
return_text=None, | |
return_type=None, | |
clean_up_tokenization_spaces=None, | |
truncation=None, | |
stop_sequence=None, | |
**generate_kwargs, | |
): | |
preprocess_params = {} | |
if truncation is not None: | |
preprocess_params["truncation"] = truncation | |
forward_params = generate_kwargs | |
postprocess_params = {} | |
if return_tensors is not None and return_type is None: | |
return_type = ReturnType.TENSORS if return_tensors else ReturnType.TEXT | |
if return_type is not None: | |
postprocess_params["return_type"] = return_type | |
if clean_up_tokenization_spaces is not None: | |
postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces | |
if stop_sequence is not None: | |
stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False) | |
if len(stop_sequence_ids) > 1: | |
warnings.warn( | |
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of" | |
" the stop sequence will be used as the stop sequence string in the interim." | |
) | |
generate_kwargs["eos_token_id"] = stop_sequence_ids[0] | |
return preprocess_params, forward_params, postprocess_params | |
def check_inputs(self, input_length: int, min_length: int, max_length: int): | |
""" | |
Checks whether there might be something wrong with given input with regard to the model. | |
""" | |
return True | |
def _parse_and_tokenize(self, *args, truncation): | |
prefix = self.model.config.prefix if self.model.config.prefix is not None else "" | |
if isinstance(args[0], list): | |
if self.tokenizer.pad_token_id is None: | |
raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input") | |
args = ([prefix + arg for arg in args[0]],) | |
padding = True | |
elif isinstance(args[0], str): | |
args = (prefix + args[0],) | |
padding = False | |
else: | |
raise ValueError( | |
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" | |
) | |
inputs = self.tokenizer(*args, padding=padding, truncation=truncation, return_tensors=self.framework) | |
# This is produced by tokenizers but is an invalid generate kwargs | |
if "token_type_ids" in inputs: | |
del inputs["token_type_ids"] | |
return inputs | |
def __call__(self, *args, **kwargs): | |
r""" | |
Generate the output text(s) using text(s) given as inputs. | |
Args: | |
args (`str` or `List[str]`): | |
Input text for the encoder. | |
return_tensors (`bool`, *optional*, defaults to `False`): | |
Whether or not to include the tensors of predictions (as token indices) in the outputs. | |
return_text (`bool`, *optional*, defaults to `True`): | |
Whether or not to include the decoded texts in the outputs. | |
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
Whether or not to clean up the potential extra spaces in the text output. | |
truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`): | |
The truncation strategy for the tokenization within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE` | |
(default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's | |
max_length instead of throwing an error down the line. | |
generate_kwargs: | |
Additional keyword arguments to pass along to the generate method of the model (see the generate method | |
corresponding to your framework [here](./model#generative-models)). | |
Return: | |
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: | |
- **generated_text** (`str`, present when `return_text=True`) -- The generated text. | |
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token | |
ids of the generated text. | |
""" | |
result = super().__call__(*args, **kwargs) | |
if ( | |
isinstance(args[0], list) | |
and all(isinstance(el, str) for el in args[0]) | |
and all(len(res) == 1 for res in result) | |
): | |
return [res[0] for res in result] | |
return result | |
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs): | |
inputs = self._parse_and_tokenize(inputs, truncation=truncation, **kwargs) | |
return inputs | |
def _forward(self, model_inputs, **generate_kwargs): | |
if self.framework == "pt": | |
in_b, input_length = model_inputs["input_ids"].shape | |
elif self.framework == "tf": | |
in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy() | |
self.check_inputs( | |
input_length, | |
generate_kwargs.get("min_length", self.model.config.min_length), | |
generate_kwargs.get("max_length", self.model.config.max_length), | |
) | |
output_ids = self.model.generate(**model_inputs, **generate_kwargs) | |
out_b = output_ids.shape[0] | |
if self.framework == "pt": | |
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) | |
elif self.framework == "tf": | |
output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:])) | |
return {"output_ids": output_ids} | |
def postprocess(self, model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False): | |
records = [] | |
for output_ids in model_outputs["output_ids"][0]: | |
if return_type == ReturnType.TENSORS: | |
record = {f"{self.return_name}_token_ids": output_ids} | |
elif return_type == ReturnType.TEXT: | |
record = { | |
f"{self.return_name}_text": self.tokenizer.decode( | |
output_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
) | |
} | |
records.append(record) | |
return records | |
class SummarizationPipeline(Text2TextGenerationPipeline): | |
""" | |
Summarize news articles and other documents. | |
This summarizing pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"summarization"`. | |
The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is | |
currently, '*bart-large-cnn*', '*t5-small*', '*t5-base*', '*t5-large*', '*t5-3b*', '*t5-11b*'. See the up-to-date | |
list of available models on [huggingface.co/models](https://huggingface.co/models?filter=summarization). For a list | |
of available parameters, see the [following | |
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) | |
Usage: | |
```python | |
# use bart in pytorch | |
summarizer = pipeline("summarization") | |
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) | |
# use t5 in tf | |
summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf") | |
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) | |
```""" | |
# Used in the return key of the pipeline. | |
return_name = "summary" | |
def __call__(self, *args, **kwargs): | |
r""" | |
Summarize the text(s) given as inputs. | |
Args: | |
documents (*str* or `List[str]`): | |
One or several articles (or one list of articles) to summarize. | |
return_text (`bool`, *optional*, defaults to `True`): | |
Whether or not to include the decoded texts in the outputs | |
return_tensors (`bool`, *optional*, defaults to `False`): | |
Whether or not to include the tensors of predictions (as token indices) in the outputs. | |
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
Whether or not to clean up the potential extra spaces in the text output. | |
generate_kwargs: | |
Additional keyword arguments to pass along to the generate method of the model (see the generate method | |
corresponding to your framework [here](./model#generative-models)). | |
Return: | |
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: | |
- **summary_text** (`str`, present when `return_text=True`) -- The summary of the corresponding input. | |
- **summary_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token | |
ids of the summary. | |
""" | |
return super().__call__(*args, **kwargs) | |
def check_inputs(self, input_length: int, min_length: int, max_length: int) -> bool: | |
""" | |
Checks whether there might be something wrong with given input with regard to the model. | |
""" | |
if max_length < min_length: | |
logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}.") | |
if input_length < max_length: | |
logger.warning( | |
f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " | |
"a summarization task, where outputs shorter than the input are typically wanted, you might " | |
f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" | |
) | |
class TranslationPipeline(Text2TextGenerationPipeline): | |
""" | |
Translates from one language to another. | |
This translation pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"translation_xx_to_yy"`. | |
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the | |
up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=translation). | |
For a list of available parameters, see the [following | |
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) | |
Usage: | |
```python | |
en_fr_translator = pipeline("translation_en_to_fr") | |
en_fr_translator("How old are you?") | |
```""" | |
# Used in the return key of the pipeline. | |
return_name = "translation" | |
def check_inputs(self, input_length: int, min_length: int, max_length: int): | |
if input_length > 0.9 * max_length: | |
logger.warning( | |
f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " | |
"increasing your max_length manually, e.g. translator('...', max_length=400)" | |
) | |
return True | |
def preprocess(self, *args, truncation=TruncationStrategy.DO_NOT_TRUNCATE, src_lang=None, tgt_lang=None): | |
if getattr(self.tokenizer, "_build_translation_inputs", None): | |
return self.tokenizer._build_translation_inputs( | |
*args, return_tensors=self.framework, truncation=truncation, src_lang=src_lang, tgt_lang=tgt_lang | |
) | |
else: | |
return super()._parse_and_tokenize(*args, truncation=truncation) | |
def _sanitize_parameters(self, src_lang=None, tgt_lang=None, **kwargs): | |
preprocess_params, forward_params, postprocess_params = super()._sanitize_parameters(**kwargs) | |
if src_lang is not None: | |
preprocess_params["src_lang"] = src_lang | |
if tgt_lang is not None: | |
preprocess_params["tgt_lang"] = tgt_lang | |
if src_lang is None and tgt_lang is None: | |
# Backward compatibility, direct arguments use is preferred. | |
task = kwargs.get("task", self.task) | |
items = task.split("_") | |
if task and len(items) == 4: | |
# translation, XX, to YY | |
preprocess_params["src_lang"] = items[1] | |
preprocess_params["tgt_lang"] = items[3] | |
return preprocess_params, forward_params, postprocess_params | |
def __call__(self, *args, **kwargs): | |
r""" | |
Translate the text(s) given as inputs. | |
Args: | |
args (`str` or `List[str]`): | |
Texts to be translated. | |
return_tensors (`bool`, *optional*, defaults to `False`): | |
Whether or not to include the tensors of predictions (as token indices) in the outputs. | |
return_text (`bool`, *optional*, defaults to `True`): | |
Whether or not to include the decoded texts in the outputs. | |
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
Whether or not to clean up the potential extra spaces in the text output. | |
src_lang (`str`, *optional*): | |
The language of the input. Might be required for multilingual models. Will not have any effect for | |
single pair translation models | |
tgt_lang (`str`, *optional*): | |
The language of the desired output. Might be required for multilingual models. Will not have any effect | |
for single pair translation models | |
generate_kwargs: | |
Additional keyword arguments to pass along to the generate method of the model (see the generate method | |
corresponding to your framework [here](./model#generative-models)). | |
Return: | |
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: | |
- **translation_text** (`str`, present when `return_text=True`) -- The translation. | |
- **translation_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The | |
token ids of the translation. | |
""" | |
return super().__call__(*args, **kwargs) | |