Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Tuple | |
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends | |
from .benchmark_args_utils import BenchmarkArguments | |
if is_torch_available(): | |
import torch | |
if is_torch_tpu_available(check_device=False): | |
import torch_xla.core.xla_model as xm | |
logger = logging.get_logger(__name__) | |
class PyTorchBenchmarkArguments(BenchmarkArguments): | |
deprecated_args = [ | |
"no_inference", | |
"no_cuda", | |
"no_tpu", | |
"no_speed", | |
"no_memory", | |
"no_env_print", | |
"no_multi_process", | |
] | |
def __init__(self, **kwargs): | |
""" | |
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be | |
deleted | |
""" | |
for deprecated_arg in self.deprecated_args: | |
if deprecated_arg in kwargs: | |
positive_arg = deprecated_arg[3:] | |
setattr(self, positive_arg, not kwargs.pop(deprecated_arg)) | |
logger.warning( | |
f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" | |
f" {positive_arg}={kwargs[positive_arg]}" | |
) | |
self.torchscript = kwargs.pop("torchscript", self.torchscript) | |
self.torch_xla_tpu_print_metrics = kwargs.pop("torch_xla_tpu_print_metrics", self.torch_xla_tpu_print_metrics) | |
self.fp16_opt_level = kwargs.pop("fp16_opt_level", self.fp16_opt_level) | |
super().__init__(**kwargs) | |
torchscript: bool = field(default=False, metadata={"help": "Trace the models using torchscript"}) | |
torch_xla_tpu_print_metrics: bool = field(default=False, metadata={"help": "Print Xla/PyTorch tpu metrics"}) | |
fp16_opt_level: str = field( | |
default="O1", | |
metadata={ | |
"help": ( | |
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " | |
"See details at https://nvidia.github.io/apex/amp.html" | |
) | |
}, | |
) | |
def _setup_devices(self) -> Tuple["torch.device", int]: | |
requires_backends(self, ["torch"]) | |
logger.info("PyTorch: setting up devices") | |
if not self.cuda: | |
device = torch.device("cpu") | |
n_gpu = 0 | |
elif is_torch_tpu_available(): | |
device = xm.xla_device() | |
n_gpu = 0 | |
else: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
n_gpu = torch.cuda.device_count() | |
return device, n_gpu | |
def is_tpu(self): | |
return is_torch_tpu_available() and self.tpu | |
def device_idx(self) -> int: | |
requires_backends(self, ["torch"]) | |
# TODO(PVP): currently only single GPU is supported | |
return torch.cuda.current_device() | |
def device(self) -> "torch.device": | |
requires_backends(self, ["torch"]) | |
return self._setup_devices[0] | |
def n_gpu(self): | |
requires_backends(self, ["torch"]) | |
return self._setup_devices[1] | |
def is_gpu(self): | |
return self.n_gpu > 0 | |