Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2021 Google AI The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch CANINE model.""" | |
import copy | |
import math | |
import os | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
ModelOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_canine import CanineConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "google/canine-s" | |
_CONFIG_FOR_DOC = "CanineConfig" | |
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"google/canine-s", | |
"google/canine-r" | |
# See all CANINE models at https://huggingface.co/models?filter=canine | |
] | |
# Support up to 16 hash functions. | |
_PRIMES = [31, 43, 59, 61, 73, 97, 103, 113, 137, 149, 157, 173, 181, 193, 211, 223] | |
class CanineModelOutputWithPooling(ModelOutput): | |
""" | |
Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly | |
different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow | |
Transformer encoders. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final | |
shallow Transformer encoder). | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): | |
Hidden-state of the first token of the sequence (classification token) at the last layer of the deep | |
Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer | |
weights are trained from the next sentence prediction (classification) objective during pretraining. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the input to each encoder + one for the output of each layer of each | |
encoder) of shape `(batch_size, sequence_length, hidden_size)` and `(batch_size, sequence_length // | |
config.downsampling_rate, hidden_size)`. Hidden-states of the model at the output of each layer plus the | |
initial input to each Transformer encoder. The hidden states of the shallow encoders have length | |
`sequence_length`, but the hidden states of the deep encoder have length `sequence_length` // | |
`config.downsampling_rate`. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of the 3 Transformer encoders of shape `(batch_size, | |
num_heads, sequence_length, sequence_length)` and `(batch_size, num_heads, sequence_length // | |
config.downsampling_rate, sequence_length // config.downsampling_rate)`. Attentions weights after the | |
attention softmax, used to compute the weighted average in the self-attention heads. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
pooler_output: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
def load_tf_weights_in_canine(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
# also discard the cls weights (which were used for the next sentence prediction pre-training task) | |
if any( | |
n | |
in [ | |
"adam_v", | |
"adam_m", | |
"AdamWeightDecayOptimizer", | |
"AdamWeightDecayOptimizer_1", | |
"global_step", | |
"cls", | |
"autoregressive_decoder", | |
"char_output_weights", | |
] | |
for n in name | |
): | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
# if first scope name starts with "bert", change it to "encoder" | |
if name[0] == "bert": | |
name[0] = "encoder" | |
# remove "embeddings" middle name of HashBucketCodepointEmbedders | |
elif name[1] == "embeddings": | |
name.remove(name[1]) | |
# rename segment_embeddings to token_type_embeddings | |
elif name[1] == "segment_embeddings": | |
name[1] = "token_type_embeddings" | |
# rename initial convolutional projection layer | |
elif name[1] == "initial_char_encoder": | |
name = ["chars_to_molecules"] + name[-2:] | |
# rename final convolutional projection layer | |
elif name[0] == "final_char_encoder" and name[1] in ["LayerNorm", "conv"]: | |
name = ["projection"] + name[1:] | |
pointer = model | |
for m_name in name: | |
if (re.fullmatch(r"[A-Za-z]+_\d+", m_name)) and "Embedder" not in m_name: | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name[-10:] in [f"Embedder_{i}" for i in range(8)]: | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
if pointer.shape != array.shape: | |
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") | |
logger.info(f"Initialize PyTorch weight {name}") | |
pointer.data = torch.from_numpy(array) | |
return model | |
class CanineEmbeddings(nn.Module): | |
"""Construct the character, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
# character embeddings | |
shard_embedding_size = config.hidden_size // config.num_hash_functions | |
for i in range(config.num_hash_functions): | |
name = f"HashBucketCodepointEmbedder_{i}" | |
setattr(self, name, nn.Embedding(config.num_hash_buckets, shard_embedding_size)) | |
self.char_position_embeddings = nn.Embedding(config.num_hash_buckets, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
def _hash_bucket_tensors(self, input_ids, num_hashes: int, num_buckets: int): | |
""" | |
Converts ids to hash bucket ids via multiple hashing. | |
Args: | |
input_ids: The codepoints or other IDs to be hashed. | |
num_hashes: The number of hash functions to use. | |
num_buckets: The number of hash buckets (i.e. embeddings in each table). | |
Returns: | |
A list of tensors, each of which is the hash bucket IDs from one hash function. | |
""" | |
if num_hashes > len(_PRIMES): | |
raise ValueError(f"`num_hashes` must be <= {len(_PRIMES)}") | |
primes = _PRIMES[:num_hashes] | |
result_tensors = [] | |
for prime in primes: | |
hashed = ((input_ids + 1) * prime) % num_buckets | |
result_tensors.append(hashed) | |
return result_tensors | |
def _embed_hash_buckets(self, input_ids, embedding_size: int, num_hashes: int, num_buckets: int): | |
"""Converts IDs (e.g. codepoints) into embeddings via multiple hashing.""" | |
if embedding_size % num_hashes != 0: | |
raise ValueError(f"Expected `embedding_size` ({embedding_size}) % `num_hashes` ({num_hashes}) == 0") | |
hash_bucket_tensors = self._hash_bucket_tensors(input_ids, num_hashes=num_hashes, num_buckets=num_buckets) | |
embedding_shards = [] | |
for i, hash_bucket_ids in enumerate(hash_bucket_tensors): | |
name = f"HashBucketCodepointEmbedder_{i}" | |
shard_embeddings = getattr(self, name)(hash_bucket_ids) | |
embedding_shards.append(shard_embeddings) | |
return torch.cat(embedding_shards, dim=-1) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self._embed_hash_buckets( | |
input_ids, self.config.hidden_size, self.config.num_hash_functions, self.config.num_hash_buckets | |
) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.char_position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class CharactersToMolecules(nn.Module): | |
"""Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions.""" | |
def __init__(self, config): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
in_channels=config.hidden_size, | |
out_channels=config.hidden_size, | |
kernel_size=config.downsampling_rate, | |
stride=config.downsampling_rate, | |
) | |
self.activation = ACT2FN[config.hidden_act] | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, char_encoding: torch.Tensor) -> torch.Tensor: | |
# `cls_encoding`: [batch, 1, hidden_size] | |
cls_encoding = char_encoding[:, 0:1, :] | |
# char_encoding has shape [batch, char_seq, hidden_size] | |
# We transpose it to be [batch, hidden_size, char_seq] | |
char_encoding = torch.transpose(char_encoding, 1, 2) | |
downsampled = self.conv(char_encoding) | |
downsampled = torch.transpose(downsampled, 1, 2) | |
downsampled = self.activation(downsampled) | |
# Truncate the last molecule in order to reserve a position for [CLS]. | |
# Often, the last position is never used (unless we completely fill the | |
# text buffer). This is important in order to maintain alignment on TPUs | |
# (i.e. a multiple of 128). | |
downsampled_truncated = downsampled[:, 0:-1, :] | |
# We also keep [CLS] as a separate sequence position since we always | |
# want to reserve a position (and the model capacity that goes along | |
# with that) in the deep BERT stack. | |
# `result`: [batch, molecule_seq, molecule_dim] | |
result = torch.cat([cls_encoding, downsampled_truncated], dim=1) | |
result = self.LayerNorm(result) | |
return result | |
class ConvProjection(nn.Module): | |
""" | |
Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size | |
characters. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.conv = nn.Conv1d( | |
in_channels=config.hidden_size * 2, | |
out_channels=config.hidden_size, | |
kernel_size=config.upsampling_kernel_size, | |
stride=1, | |
) | |
self.activation = ACT2FN[config.hidden_act] | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward( | |
self, | |
inputs: torch.Tensor, | |
final_seq_char_positions: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
# inputs has shape [batch, mol_seq, molecule_hidden_size+char_hidden_final] | |
# we transpose it to be [batch, molecule_hidden_size+char_hidden_final, mol_seq] | |
inputs = torch.transpose(inputs, 1, 2) | |
# PyTorch < 1.9 does not support padding="same" (which is used in the original implementation), | |
# so we pad the tensor manually before passing it to the conv layer | |
# based on https://github.com/google-research/big_transfer/blob/49afe42338b62af9fbe18f0258197a33ee578a6b/bit_tf2/models.py#L36-L38 | |
pad_total = self.config.upsampling_kernel_size - 1 | |
pad_beg = pad_total // 2 | |
pad_end = pad_total - pad_beg | |
pad = nn.ConstantPad1d((pad_beg, pad_end), 0) | |
# `result`: shape (batch_size, char_seq_len, hidden_size) | |
result = self.conv(pad(inputs)) | |
result = torch.transpose(result, 1, 2) | |
result = self.activation(result) | |
result = self.LayerNorm(result) | |
result = self.dropout(result) | |
final_char_seq = result | |
if final_seq_char_positions is not None: | |
# Limit transformer query seq and attention mask to these character | |
# positions to greatly reduce the compute cost. Typically, this is just | |
# done for the MLM training task. | |
# TODO add support for MLM | |
raise NotImplementedError("CanineForMaskedLM is currently not supported") | |
else: | |
query_seq = final_char_seq | |
return query_seq | |
class CanineSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
from_tensor: torch.Tensor, | |
to_tensor: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
mixed_query_layer = self.query(from_tensor) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
key_layer = self.transpose_for_scores(self.key(to_tensor)) | |
value_layer = self.transpose_for_scores(self.value(to_tensor)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
seq_length = from_tensor.size()[1] | |
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(-1, 1) | |
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
if attention_mask.ndim == 3: | |
# if attention_mask is 3D, do the following: | |
attention_mask = torch.unsqueeze(attention_mask, dim=1) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and the dtype's smallest value for masked positions. | |
attention_mask = (1.0 - attention_mask.float()) * torch.finfo(attention_scores.dtype).min | |
# Apply the attention mask (precomputed for all layers in CanineModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class CanineSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward( | |
self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class CanineAttention(nn.Module): | |
""" | |
Additional arguments related to local attention: | |
- **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention. | |
- **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to | |
attend | |
to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`, | |
*optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all | |
positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The | |
width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to | |
128) -- The number of elements to skip when moving to the next block in `from_tensor`. - | |
**attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in | |
*to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to | |
skip when moving to the next block in `to_tensor`. | |
""" | |
def __init__( | |
self, | |
config, | |
local=False, | |
always_attend_to_first_position: bool = False, | |
first_position_attends_to_all: bool = False, | |
attend_from_chunk_width: int = 128, | |
attend_from_chunk_stride: int = 128, | |
attend_to_chunk_width: int = 128, | |
attend_to_chunk_stride: int = 128, | |
): | |
super().__init__() | |
self.self = CanineSelfAttention(config) | |
self.output = CanineSelfOutput(config) | |
self.pruned_heads = set() | |
# additional arguments related to local attention | |
self.local = local | |
if attend_from_chunk_width < attend_from_chunk_stride: | |
raise ValueError( | |
"`attend_from_chunk_width` < `attend_from_chunk_stride` would cause sequence positions to get skipped." | |
) | |
if attend_to_chunk_width < attend_to_chunk_stride: | |
raise ValueError( | |
"`attend_to_chunk_width` < `attend_to_chunk_stride`would cause sequence positions to get skipped." | |
) | |
self.always_attend_to_first_position = always_attend_to_first_position | |
self.first_position_attends_to_all = first_position_attends_to_all | |
self.attend_from_chunk_width = attend_from_chunk_width | |
self.attend_from_chunk_stride = attend_from_chunk_stride | |
self.attend_to_chunk_width = attend_to_chunk_width | |
self.attend_to_chunk_stride = attend_to_chunk_stride | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: Tuple[torch.FloatTensor], | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: | |
if not self.local: | |
self_outputs = self.self(hidden_states, hidden_states, attention_mask, head_mask, output_attentions) | |
attention_output = self_outputs[0] | |
else: | |
from_seq_length = to_seq_length = hidden_states.shape[1] | |
from_tensor = to_tensor = hidden_states | |
# Create chunks (windows) that we will attend *from* and then concatenate them. | |
from_chunks = [] | |
if self.first_position_attends_to_all: | |
from_chunks.append((0, 1)) | |
# We must skip this first position so that our output sequence is the | |
# correct length (this matters in the *from* sequence only). | |
from_start = 1 | |
else: | |
from_start = 0 | |
for chunk_start in range(from_start, from_seq_length, self.attend_from_chunk_stride): | |
chunk_end = min(from_seq_length, chunk_start + self.attend_from_chunk_width) | |
from_chunks.append((chunk_start, chunk_end)) | |
# Determine the chunks (windows) that will will attend *to*. | |
to_chunks = [] | |
if self.first_position_attends_to_all: | |
to_chunks.append((0, to_seq_length)) | |
for chunk_start in range(0, to_seq_length, self.attend_to_chunk_stride): | |
chunk_end = min(to_seq_length, chunk_start + self.attend_to_chunk_width) | |
to_chunks.append((chunk_start, chunk_end)) | |
if len(from_chunks) != len(to_chunks): | |
raise ValueError( | |
f"Expected to have same number of `from_chunks` ({from_chunks}) and " | |
f"`to_chunks` ({from_chunks}). Check strides." | |
) | |
# next, compute attention scores for each pair of windows and concatenate | |
attention_output_chunks = [] | |
attention_probs_chunks = [] | |
for (from_start, from_end), (to_start, to_end) in zip(from_chunks, to_chunks): | |
from_tensor_chunk = from_tensor[:, from_start:from_end, :] | |
to_tensor_chunk = to_tensor[:, to_start:to_end, :] | |
# `attention_mask`: <float>[batch_size, from_seq, to_seq] | |
# `attention_mask_chunk`: <float>[batch_size, from_seq_chunk, to_seq_chunk] | |
attention_mask_chunk = attention_mask[:, from_start:from_end, to_start:to_end] | |
if self.always_attend_to_first_position: | |
cls_attention_mask = attention_mask[:, from_start:from_end, 0:1] | |
attention_mask_chunk = torch.cat([cls_attention_mask, attention_mask_chunk], dim=2) | |
cls_position = to_tensor[:, 0:1, :] | |
to_tensor_chunk = torch.cat([cls_position, to_tensor_chunk], dim=1) | |
attention_outputs_chunk = self.self( | |
from_tensor_chunk, to_tensor_chunk, attention_mask_chunk, head_mask, output_attentions | |
) | |
attention_output_chunks.append(attention_outputs_chunk[0]) | |
if output_attentions: | |
attention_probs_chunks.append(attention_outputs_chunk[1]) | |
attention_output = torch.cat(attention_output_chunks, dim=1) | |
attention_output = self.output(attention_output, hidden_states) | |
outputs = (attention_output,) | |
if not self.local: | |
outputs = outputs + self_outputs[1:] # add attentions if we output them | |
else: | |
outputs = outputs + tuple(attention_probs_chunks) # add attentions if we output them | |
return outputs | |
class CanineIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class CanineOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class CanineLayer(nn.Module): | |
def __init__( | |
self, | |
config, | |
local, | |
always_attend_to_first_position, | |
first_position_attends_to_all, | |
attend_from_chunk_width, | |
attend_from_chunk_stride, | |
attend_to_chunk_width, | |
attend_to_chunk_stride, | |
): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = CanineAttention( | |
config, | |
local, | |
always_attend_to_first_position, | |
first_position_attends_to_all, | |
attend_from_chunk_width, | |
attend_from_chunk_stride, | |
attend_to_chunk_width, | |
attend_to_chunk_stride, | |
) | |
self.intermediate = CanineIntermediate(config) | |
self.output = CanineOutput(config) | |
def forward( | |
self, | |
hidden_states: Tuple[torch.FloatTensor], | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class CanineEncoder(nn.Module): | |
def __init__( | |
self, | |
config, | |
local=False, | |
always_attend_to_first_position=False, | |
first_position_attends_to_all=False, | |
attend_from_chunk_width=128, | |
attend_from_chunk_stride=128, | |
attend_to_chunk_width=128, | |
attend_to_chunk_stride=128, | |
): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList( | |
[ | |
CanineLayer( | |
config, | |
local, | |
always_attend_to_first_position, | |
first_position_attends_to_all, | |
attend_from_chunk_width, | |
attend_from_chunk_stride, | |
attend_to_chunk_width, | |
attend_to_chunk_stride, | |
) | |
for _ in range(config.num_hidden_layers) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: Tuple[torch.FloatTensor], | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class CaninePooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class CaninePredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class CanineLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = CaninePredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor: | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
class CanineOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = CanineLMPredictionHead(config) | |
def forward( | |
self, | |
sequence_output: Tuple[torch.Tensor], | |
) -> Tuple[torch.Tensor]: | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class CaninePreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = CanineConfig | |
load_tf_weights = load_tf_weights_in_canine | |
base_model_prefix = "canine" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv1d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, CanineEncoder): | |
module.gradient_checkpointing = value | |
CANINE_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`CanineConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
CANINE_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class CanineModel(CaninePreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
shallow_config = copy.deepcopy(config) | |
shallow_config.num_hidden_layers = 1 | |
self.char_embeddings = CanineEmbeddings(config) | |
# shallow/low-dim transformer encoder to get a initial character encoding | |
self.initial_char_encoder = CanineEncoder( | |
shallow_config, | |
local=True, | |
always_attend_to_first_position=False, | |
first_position_attends_to_all=False, | |
attend_from_chunk_width=config.local_transformer_stride, | |
attend_from_chunk_stride=config.local_transformer_stride, | |
attend_to_chunk_width=config.local_transformer_stride, | |
attend_to_chunk_stride=config.local_transformer_stride, | |
) | |
self.chars_to_molecules = CharactersToMolecules(config) | |
# deep transformer encoder | |
self.encoder = CanineEncoder(config) | |
self.projection = ConvProjection(config) | |
# shallow/low-dim transformer encoder to get a final character encoding | |
self.final_char_encoder = CanineEncoder(shallow_config) | |
self.pooler = CaninePooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def _create_3d_attention_mask_from_input_mask(self, from_tensor, to_mask): | |
""" | |
Create 3D attention mask from a 2D tensor mask. | |
Args: | |
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. | |
to_mask: int32 Tensor of shape [batch_size, to_seq_length]. | |
Returns: | |
float Tensor of shape [batch_size, from_seq_length, to_seq_length]. | |
""" | |
batch_size, from_seq_length = from_tensor.shape[0], from_tensor.shape[1] | |
to_seq_length = to_mask.shape[1] | |
to_mask = torch.reshape(to_mask, (batch_size, 1, to_seq_length)).float() | |
# We don't assume that `from_tensor` is a mask (although it could be). We | |
# don't actually care if we attend *from* padding tokens (only *to* padding) | |
# tokens so we create a tensor of all ones. | |
broadcast_ones = torch.ones(size=(batch_size, from_seq_length, 1), dtype=torch.float32, device=to_mask.device) | |
# Here we broadcast along two dimensions to create the mask. | |
mask = broadcast_ones * to_mask | |
return mask | |
def _downsample_attention_mask(self, char_attention_mask: torch.Tensor, downsampling_rate: int): | |
"""Downsample 2D character attention mask to 2D molecule attention mask using MaxPool1d layer.""" | |
# first, make char_attention_mask 3D by adding a channel dim | |
batch_size, char_seq_len = char_attention_mask.shape | |
poolable_char_mask = torch.reshape(char_attention_mask, (batch_size, 1, char_seq_len)) | |
# next, apply MaxPool1d to get pooled_molecule_mask of shape (batch_size, 1, mol_seq_len) | |
pooled_molecule_mask = torch.nn.MaxPool1d(kernel_size=downsampling_rate, stride=downsampling_rate)( | |
poolable_char_mask.float() | |
) | |
# finally, squeeze to get tensor of shape (batch_size, mol_seq_len) | |
molecule_attention_mask = torch.squeeze(pooled_molecule_mask, dim=-1) | |
return molecule_attention_mask | |
def _repeat_molecules(self, molecules: torch.Tensor, char_seq_length: torch.Tensor) -> torch.Tensor: | |
"""Repeats molecules to make them the same length as the char sequence.""" | |
rate = self.config.downsampling_rate | |
molecules_without_extra_cls = molecules[:, 1:, :] | |
# `repeated`: [batch_size, almost_char_seq_len, molecule_hidden_size] | |
repeated = torch.repeat_interleave(molecules_without_extra_cls, repeats=rate, dim=-2) | |
# So far, we've repeated the elements sufficient for any `char_seq_length` | |
# that's a multiple of `downsampling_rate`. Now we account for the last | |
# n elements (n < `downsampling_rate`), i.e. the remainder of floor | |
# division. We do this by repeating the last molecule a few extra times. | |
last_molecule = molecules[:, -1:, :] | |
remainder_length = torch.fmod(torch.tensor(char_seq_length), torch.tensor(rate)).item() | |
remainder_repeated = torch.repeat_interleave( | |
last_molecule, | |
# +1 molecule to compensate for truncation. | |
repeats=remainder_length + rate, | |
dim=-2, | |
) | |
# `repeated`: [batch_size, char_seq_len, molecule_hidden_size] | |
return torch.cat([repeated, remainder_repeated], dim=-2) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CanineModelOutputWithPooling]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length)), device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) | |
molecule_attention_mask = self._downsample_attention_mask( | |
attention_mask, downsampling_rate=self.config.downsampling_rate | |
) | |
extended_molecule_attention_mask: torch.Tensor = self.get_extended_attention_mask( | |
molecule_attention_mask, (batch_size, molecule_attention_mask.shape[-1]) | |
) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
# `input_char_embeddings`: shape (batch_size, char_seq, char_dim) | |
input_char_embeddings = self.char_embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
# Contextualize character embeddings using shallow Transformer. | |
# We use a 3D attention mask for the local attention. | |
# `input_char_encoding`: shape (batch_size, char_seq_len, char_dim) | |
char_attention_mask = self._create_3d_attention_mask_from_input_mask( | |
input_ids if input_ids is not None else inputs_embeds, attention_mask | |
) | |
init_chars_encoder_outputs = self.initial_char_encoder( | |
input_char_embeddings, | |
attention_mask=char_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
) | |
input_char_encoding = init_chars_encoder_outputs.last_hidden_state | |
# Downsample chars to molecules. | |
# The following lines have dimensions: [batch, molecule_seq, molecule_dim]. | |
# In this transformation, we change the dimensionality from `char_dim` to | |
# `molecule_dim`, but do *NOT* add a resnet connection. Instead, we rely on | |
# the resnet connections (a) from the final char transformer stack back into | |
# the original char transformer stack and (b) the resnet connections from | |
# the final char transformer stack back into the deep BERT stack of | |
# molecules. | |
# | |
# Empirically, it is critical to use a powerful enough transformation here: | |
# mean pooling causes training to diverge with huge gradient norms in this | |
# region of the model; using a convolution here resolves this issue. From | |
# this, it seems that molecules and characters require a very different | |
# feature space; intuitively, this makes sense. | |
init_molecule_encoding = self.chars_to_molecules(input_char_encoding) | |
# Deep BERT encoder | |
# `molecule_sequence_output`: shape (batch_size, mol_seq_len, mol_dim) | |
encoder_outputs = self.encoder( | |
init_molecule_encoding, | |
attention_mask=extended_molecule_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
molecule_sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(molecule_sequence_output) if self.pooler is not None else None | |
# Upsample molecules back to characters. | |
# `repeated_molecules`: shape (batch_size, char_seq_len, mol_hidden_size) | |
repeated_molecules = self._repeat_molecules(molecule_sequence_output, char_seq_length=input_shape[-1]) | |
# Concatenate representations (contextualized char embeddings and repeated molecules): | |
# `concat`: shape [batch_size, char_seq_len, molecule_hidden_size+char_hidden_final] | |
concat = torch.cat([input_char_encoding, repeated_molecules], dim=-1) | |
# Project representation dimension back to hidden_size | |
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size]) | |
sequence_output = self.projection(concat) | |
# Apply final shallow Transformer | |
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size]) | |
final_chars_encoder_outputs = self.final_char_encoder( | |
sequence_output, | |
attention_mask=extended_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
) | |
sequence_output = final_chars_encoder_outputs.last_hidden_state | |
if output_hidden_states: | |
deep_encoder_hidden_states = encoder_outputs.hidden_states if return_dict else encoder_outputs[1] | |
all_hidden_states = ( | |
all_hidden_states | |
+ init_chars_encoder_outputs.hidden_states | |
+ deep_encoder_hidden_states | |
+ final_chars_encoder_outputs.hidden_states | |
) | |
if output_attentions: | |
deep_encoder_self_attentions = encoder_outputs.attentions if return_dict else encoder_outputs[-1] | |
all_self_attentions = ( | |
all_self_attentions | |
+ init_chars_encoder_outputs.attentions | |
+ deep_encoder_self_attentions | |
+ final_chars_encoder_outputs.attentions | |
) | |
if not return_dict: | |
output = (sequence_output, pooled_output) | |
output += tuple(v for v in [all_hidden_states, all_self_attentions] if v is not None) | |
return output | |
return CanineModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class CanineForSequenceClassification(CaninePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.canine = CanineModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.canine( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class CanineForMultipleChoice(CaninePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.canine = CanineModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MultipleChoiceModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.canine( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class CanineForTokenClassification(CaninePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.canine = CanineModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, CanineForTokenClassification | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s") | |
>>> model = CanineForTokenClassification.from_pretrained("google/canine-s") | |
>>> inputs = tokenizer( | |
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" | |
... ) | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_token_class_ids = logits.argmax(-1) | |
>>> # Note that tokens are classified rather then input words which means that | |
>>> # there might be more predicted token classes than words. | |
>>> # Multiple token classes might account for the same word | |
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] | |
>>> predicted_tokens_classes # doctest: +SKIP | |
``` | |
```python | |
>>> labels = predicted_token_class_ids | |
>>> loss = model(**inputs, labels=labels).loss | |
>>> round(loss.item(), 2) # doctest: +SKIP | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.canine( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class CanineForQuestionAnswering(CaninePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.canine = CanineModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.canine( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |