Spaces:
Running
on
T4
Running
on
T4
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from argparse import ArgumentParser, Namespace | |
from ..data import SingleSentenceClassificationProcessor as Processor | |
from ..pipelines import TextClassificationPipeline | |
from ..utils import is_tf_available, is_torch_available, logging | |
from . import BaseTransformersCLICommand | |
if not is_tf_available() and not is_torch_available(): | |
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") | |
# TF training parameters | |
USE_XLA = False | |
USE_AMP = False | |
def train_command_factory(args: Namespace): | |
""" | |
Factory function used to instantiate training command from provided command line arguments. | |
Returns: TrainCommand | |
""" | |
return TrainCommand(args) | |
class TrainCommand(BaseTransformersCLICommand): | |
def register_subcommand(parser: ArgumentParser): | |
""" | |
Register this command to argparse so it's available for the transformer-cli | |
Args: | |
parser: Root parser to register command-specific arguments | |
""" | |
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.") | |
train_parser.add_argument( | |
"--train_data", | |
type=str, | |
required=True, | |
help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.", | |
) | |
train_parser.add_argument( | |
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels." | |
) | |
train_parser.add_argument( | |
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts." | |
) | |
train_parser.add_argument( | |
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids." | |
) | |
train_parser.add_argument( | |
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)." | |
) | |
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.") | |
train_parser.add_argument( | |
"--validation_split", | |
type=float, | |
default=0.1, | |
help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.", | |
) | |
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.") | |
train_parser.add_argument( | |
"--task", type=str, default="text_classification", help="Task to train the model on." | |
) | |
train_parser.add_argument( | |
"--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model." | |
) | |
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.") | |
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.") | |
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.") | |
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.") | |
train_parser.set_defaults(func=train_command_factory) | |
def __init__(self, args: Namespace): | |
self.logger = logging.get_logger("transformers-cli/training") | |
self.framework = "tf" if is_tf_available() else "torch" | |
os.makedirs(args.output, exist_ok=True) | |
self.output = args.output | |
self.column_label = args.column_label | |
self.column_text = args.column_text | |
self.column_id = args.column_id | |
self.logger.info(f"Loading {args.task} pipeline for {args.model}") | |
if args.task == "text_classification": | |
self.pipeline = TextClassificationPipeline.from_pretrained(args.model) | |
elif args.task == "token_classification": | |
raise NotImplementedError | |
elif args.task == "question_answering": | |
raise NotImplementedError | |
self.logger.info(f"Loading dataset from {args.train_data}") | |
self.train_dataset = Processor.create_from_csv( | |
args.train_data, | |
column_label=args.column_label, | |
column_text=args.column_text, | |
column_id=args.column_id, | |
skip_first_row=args.skip_first_row, | |
) | |
self.valid_dataset = None | |
if args.validation_data: | |
self.logger.info(f"Loading validation dataset from {args.validation_data}") | |
self.valid_dataset = Processor.create_from_csv( | |
args.validation_data, | |
column_label=args.column_label, | |
column_text=args.column_text, | |
column_id=args.column_id, | |
skip_first_row=args.skip_first_row, | |
) | |
self.validation_split = args.validation_split | |
self.train_batch_size = args.train_batch_size | |
self.valid_batch_size = args.valid_batch_size | |
self.learning_rate = args.learning_rate | |
self.adam_epsilon = args.adam_epsilon | |
def run(self): | |
if self.framework == "tf": | |
return self.run_tf() | |
return self.run_torch() | |
def run_torch(self): | |
raise NotImplementedError | |
def run_tf(self): | |
self.pipeline.fit( | |
self.train_dataset, | |
validation_data=self.valid_dataset, | |
validation_split=self.validation_split, | |
learning_rate=self.learning_rate, | |
adam_epsilon=self.adam_epsilon, | |
train_batch_size=self.train_batch_size, | |
valid_batch_size=self.valid_batch_size, | |
) | |
# Save trained pipeline | |
self.pipeline.save_pretrained(self.output) | |