File size: 48,251 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import json
import os
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from huggingface_hub import model_info
from numpy import isin
from ..configuration_utils import PretrainedConfig
from ..dynamic_module_utils import get_class_from_dynamic_module
from ..feature_extraction_utils import PreTrainedFeatureExtractor
from ..image_processing_utils import BaseImageProcessor
from ..models.auto.configuration_auto import AutoConfig
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
from ..tokenization_utils import PreTrainedTokenizer
from ..utils import (
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
find_adapter_config_file,
is_kenlm_available,
is_offline_mode,
is_peft_available,
is_pyctcdecode_available,
is_tf_available,
is_torch_available,
logging,
)
from .audio_classification import AudioClassificationPipeline
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
from .base import (
ArgumentHandler,
CsvPipelineDataFormat,
JsonPipelineDataFormat,
PipedPipelineDataFormat,
Pipeline,
PipelineDataFormat,
PipelineException,
PipelineRegistry,
get_default_model_and_revision,
infer_framework_load_model,
)
from .conversational import Conversation, ConversationalPipeline
from .depth_estimation import DepthEstimationPipeline
from .document_question_answering import DocumentQuestionAnsweringPipeline
from .feature_extraction import FeatureExtractionPipeline
from .fill_mask import FillMaskPipeline
from .image_classification import ImageClassificationPipeline
from .image_segmentation import ImageSegmentationPipeline
from .image_to_image import ImageToImagePipeline
from .image_to_text import ImageToTextPipeline
from .mask_generation import MaskGenerationPipeline
from .object_detection import ObjectDetectionPipeline
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
from .text_classification import TextClassificationPipeline
from .text_generation import TextGenerationPipeline
from .text_to_audio import TextToAudioPipeline
from .token_classification import (
AggregationStrategy,
NerPipeline,
TokenClassificationArgumentHandler,
TokenClassificationPipeline,
)
from .video_classification import VideoClassificationPipeline
from .visual_question_answering import VisualQuestionAnsweringPipeline
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForImageClassification,
TFAutoModelForMaskedLM,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelForVision2Seq,
TFAutoModelForZeroShotImageClassification,
)
if is_torch_available():
import torch
from ..models.auto.modeling_auto import (
AutoModel,
AutoModelForAudioClassification,
AutoModelForCausalLM,
AutoModelForCTC,
AutoModelForDocumentQuestionAnswering,
AutoModelForImageClassification,
AutoModelForImageSegmentation,
AutoModelForMaskedLM,
AutoModelForMaskGeneration,
AutoModelForObjectDetection,
AutoModelForQuestionAnswering,
AutoModelForSemanticSegmentation,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForSpeechSeq2Seq,
AutoModelForTableQuestionAnswering,
AutoModelForTextToSpectrogram,
AutoModelForTextToWaveform,
AutoModelForTokenClassification,
AutoModelForVideoClassification,
AutoModelForVision2Seq,
AutoModelForVisualQuestionAnswering,
AutoModelForZeroShotImageClassification,
AutoModelForZeroShotObjectDetection,
)
if TYPE_CHECKING:
from ..modeling_tf_utils import TFPreTrainedModel
from ..modeling_utils import PreTrainedModel
from ..tokenization_utils_fast import PreTrainedTokenizerFast
logger = logging.get_logger(__name__)
# Register all the supported tasks here
TASK_ALIASES = {
"sentiment-analysis": "text-classification",
"ner": "token-classification",
"vqa": "visual-question-answering",
"text-to-speech": "text-to-audio",
}
SUPPORTED_TASKS = {
"audio-classification": {
"impl": AudioClassificationPipeline,
"tf": (),
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
"type": "audio",
},
"automatic-speech-recognition": {
"impl": AutomaticSpeechRecognitionPipeline,
"tf": (),
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
"type": "multimodal",
},
"text-to-audio": {
"impl": TextToAudioPipeline,
"tf": (),
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
"type": "text",
},
"feature-extraction": {
"impl": FeatureExtractionPipeline,
"tf": (TFAutoModel,) if is_tf_available() else (),
"pt": (AutoModel,) if is_torch_available() else (),
"default": {"model": {"pt": ("distilbert-base-cased", "935ac13"), "tf": ("distilbert-base-cased", "935ac13")}},
"type": "multimodal",
},
"text-classification": {
"impl": TextClassificationPipeline,
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
"tf": ("distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
},
},
"type": "text",
},
"token-classification": {
"impl": TokenClassificationPipeline,
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
},
},
"type": "text",
},
"question-answering": {
"impl": QuestionAnsweringPipeline,
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("distilbert-base-cased-distilled-squad", "626af31"),
"tf": ("distilbert-base-cased-distilled-squad", "626af31"),
},
},
"type": "text",
},
"table-question-answering": {
"impl": TableQuestionAnsweringPipeline,
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
"default": {
"model": {
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
},
},
"type": "text",
},
"visual-question-answering": {
"impl": VisualQuestionAnsweringPipeline,
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
"tf": (),
"default": {
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
},
"type": "multimodal",
},
"document-question-answering": {
"impl": DocumentQuestionAnsweringPipeline,
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
"tf": (),
"default": {
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
},
"type": "multimodal",
},
"fill-mask": {
"impl": FillMaskPipeline,
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
"default": {"model": {"pt": ("distilroberta-base", "ec58a5b"), "tf": ("distilroberta-base", "ec58a5b")}},
"type": "text",
},
"summarization": {
"impl": SummarizationPipeline,
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
"default": {"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("t5-small", "d769bba")}},
"type": "text",
},
# This task is a special case as it's parametrized by SRC, TGT languages.
"translation": {
"impl": TranslationPipeline,
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
"default": {
("en", "fr"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
("en", "de"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
("en", "ro"): {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
},
"type": "text",
},
"text2text-generation": {
"impl": Text2TextGenerationPipeline,
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
"default": {"model": {"pt": ("t5-base", "686f1db"), "tf": ("t5-base", "686f1db")}},
"type": "text",
},
"text-generation": {
"impl": TextGenerationPipeline,
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
"pt": (AutoModelForCausalLM,) if is_torch_available() else (),
"default": {"model": {"pt": ("gpt2", "6c0e608"), "tf": ("gpt2", "6c0e608")}},
"type": "text",
},
"zero-shot-classification": {
"impl": ZeroShotClassificationPipeline,
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
"default": {
"model": {"pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("roberta-large-mnli", "130fb28")},
"config": {"pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("roberta-large-mnli", "130fb28")},
},
"type": "text",
},
"zero-shot-image-classification": {
"impl": ZeroShotImageClassificationPipeline,
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("openai/clip-vit-base-patch32", "f4881ba"),
"tf": ("openai/clip-vit-base-patch32", "f4881ba"),
}
},
"type": "multimodal",
},
"zero-shot-audio-classification": {
"impl": ZeroShotAudioClassificationPipeline,
"tf": (),
"pt": (AutoModel,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("laion/clap-htsat-fused", "973b6e5"),
}
},
"type": "multimodal",
},
"conversational": {
"impl": ConversationalPipeline,
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
"default": {
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
},
"type": "text",
},
"image-classification": {
"impl": ImageClassificationPipeline,
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
"pt": (AutoModelForImageClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("google/vit-base-patch16-224", "5dca96d"),
"tf": ("google/vit-base-patch16-224", "5dca96d"),
}
},
"type": "image",
},
"image-segmentation": {
"impl": ImageSegmentationPipeline,
"tf": (),
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
"type": "multimodal",
},
"image-to-text": {
"impl": ImageToTextPipeline,
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
}
},
"type": "multimodal",
},
"object-detection": {
"impl": ObjectDetectionPipeline,
"tf": (),
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
"type": "multimodal",
},
"zero-shot-object-detection": {
"impl": ZeroShotObjectDetectionPipeline,
"tf": (),
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
"type": "multimodal",
},
"depth-estimation": {
"impl": DepthEstimationPipeline,
"tf": (),
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
"type": "image",
},
"video-classification": {
"impl": VideoClassificationPipeline,
"tf": (),
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
"type": "video",
},
"mask-generation": {
"impl": MaskGenerationPipeline,
"tf": (),
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
"type": "multimodal",
},
"image-to-image": {
"impl": ImageToImagePipeline,
"tf": (),
"pt": (AutoModelForImageToImage,) if is_torch_available() else (),
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
"type": "image",
},
}
NO_FEATURE_EXTRACTOR_TASKS = set()
NO_IMAGE_PROCESSOR_TASKS = set()
NO_TOKENIZER_TASKS = set()
# Those model configs are special, they are generic over their task, meaning
# any tokenizer/feature_extractor might be use for a given model so we cannot
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to
# see if the model defines such objects or not.
MULTI_MODEL_CONFIGS = {"SpeechEncoderDecoderConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
for task, values in SUPPORTED_TASKS.items():
if values["type"] == "text":
NO_FEATURE_EXTRACTOR_TASKS.add(task)
NO_IMAGE_PROCESSOR_TASKS.add(task)
elif values["type"] in {"image", "video"}:
NO_TOKENIZER_TASKS.add(task)
elif values["type"] in {"audio"}:
NO_TOKENIZER_TASKS.add(task)
NO_IMAGE_PROCESSOR_TASKS.add(task)
elif values["type"] != "multimodal":
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}")
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
def get_supported_tasks() -> List[str]:
"""
Returns a list of supported task strings.
"""
return PIPELINE_REGISTRY.get_supported_tasks()
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
if is_offline_mode():
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
try:
info = model_info(model, token=token)
except Exception as e:
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
if not info.pipeline_tag:
raise RuntimeError(
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
)
if getattr(info, "library_name", "transformers") != "transformers":
raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers")
task = info.pipeline_tag
return task
def check_task(task: str) -> Tuple[str, Dict, Any]:
"""
Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and
default models if they exist.
Args:
task (`str`):
The task defining which pipeline will be returned. Currently accepted tasks are:
- `"audio-classification"`
- `"automatic-speech-recognition"`
- `"conversational"`
- `"depth-estimation"`
- `"document-question-answering"`
- `"feature-extraction"`
- `"fill-mask"`
- `"image-classification"`
- `"image-segmentation"`
- `"image-to-text"`
- `"image-to-image"`
- `"object-detection"`
- `"question-answering"`
- `"summarization"`
- `"table-question-answering"`
- `"text2text-generation"`
- `"text-classification"` (alias `"sentiment-analysis"` available)
- `"text-generation"`
- `"text-to-audio"` (alias `"text-to-speech"` available)
- `"token-classification"` (alias `"ner"` available)
- `"translation"`
- `"translation_xx_to_yy"`
- `"video-classification"`
- `"visual-question-answering"`
- `"zero-shot-classification"`
- `"zero-shot-image-classification"`
- `"zero-shot-object-detection"`
Returns:
(normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name
(removed alias and options). The actual dictionary required to initialize the pipeline and some extra task
options for parametrized tasks like "translation_XX_to_YY"
"""
return PIPELINE_REGISTRY.check_task(task)
def clean_custom_task(task_info):
import transformers
if "impl" not in task_info:
raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.")
pt_class_names = task_info.get("pt", ())
if isinstance(pt_class_names, str):
pt_class_names = [pt_class_names]
task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names)
tf_class_names = task_info.get("tf", ())
if isinstance(tf_class_names, str):
tf_class_names = [tf_class_names]
task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names)
return task_info, None
def pipeline(
task: str = None,
model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None,
config: Optional[Union[str, PretrainedConfig]] = None,
tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None,
feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None,
image_processor: Optional[Union[str, BaseImageProcessor]] = None,
framework: Optional[str] = None,
revision: Optional[str] = None,
use_fast: bool = True,
token: Optional[Union[str, bool]] = None,
device: Optional[Union[int, str, "torch.device"]] = None,
device_map=None,
torch_dtype=None,
trust_remote_code: Optional[bool] = None,
model_kwargs: Dict[str, Any] = None,
pipeline_class: Optional[Any] = None,
**kwargs,
) -> Pipeline:
"""
Utility factory method to build a [`Pipeline`].
Pipelines are made of:
- A [tokenizer](tokenizer) in charge of mapping raw textual input to token.
- A [model](model) to make predictions from the inputs.
- Some (optional) post processing for enhancing model's output.
Args:
task (`str`):
The task defining which pipeline will be returned. Currently accepted tasks are:
- `"audio-classification"`: will return a [`AudioClassificationPipeline`].
- `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
- `"conversational"`: will return a [`ConversationalPipeline`].
- `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
- `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
- `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
- `"fill-mask"`: will return a [`FillMaskPipeline`]:.
- `"image-classification"`: will return a [`ImageClassificationPipeline`].
- `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
- `"image-to-image"`: will return a [`ImageToImagePipeline`].
- `"image-to-text"`: will return a [`ImageToTextPipeline`].
- `"mask-generation"`: will return a [`MaskGenerationPipeline`].
- `"object-detection"`: will return a [`ObjectDetectionPipeline`].
- `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
- `"summarization"`: will return a [`SummarizationPipeline`].
- `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
- `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a
[`TextClassificationPipeline`].
- `"text-generation"`: will return a [`TextGenerationPipeline`]:.
- `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
- `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
- `"translation"`: will return a [`TranslationPipeline`].
- `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
- `"video-classification"`: will return a [`VideoClassificationPipeline`].
- `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
- `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
- `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
- `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
- `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].
model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*):
The model that will be used by the pipeline to make predictions. This can be a model identifier or an
actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or
[`TFPreTrainedModel`] (for TensorFlow).
If not provided, the default for the `task` will be loaded.
config (`str` or [`PretrainedConfig`], *optional*):
The configuration that will be used by the pipeline to instantiate the model. This can be a model
identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`].
If not provided, the default configuration file for the requested model will be used. That means that if
`model` is given, its default configuration will be used. However, if `model` is not supplied, this
`task`'s default model's config is used instead.
tokenizer (`str` or [`PreTrainedTokenizer`], *optional*):
The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`].
If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model`
is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string).
However, if `config` is also not given or not a string, then the default tokenizer for the given `task`
will be loaded.
feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*):
The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`].
Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal
models. Multi-modal models will also require a tokenizer to be passed.
If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If
`model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it
is a string). However, if `config` is also not given or not a string, then the default feature extractor
for the given `task` will be loaded.
framework (`str`, *optional*):
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
installed.
If no framework is specified, will default to the one currently installed. If no framework is specified and
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
provided.
revision (`str`, *optional*, defaults to `"main"`):
When passing a task name or a string model identifier: The specific model version to use. It can be a
branch name, a tag name, or a commit id, since we use a git-based system for storing models and other
artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
use_fast (`bool`, *optional*, defaults to `True`):
Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]).
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
device (`int` or `str` or `torch.device`):
Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this
pipeline will be allocated.
device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*):
Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set
`device_map="auto"` to compute the most optimized `device_map` automatically (see
[here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload)
for more information).
<Tip warning={true}>
Do not use `device_map` AND `device` at the same time as they will conflict
</Tip>
torch_dtype (`str` or `torch.dtype`, *optional*):
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`).
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom code defined on the Hub in their own modeling, configuration,
tokenization or even pipeline files. This option should only be set to `True` for repositories you trust
and in which you have read the code, as it will execute code present on the Hub on your local machine.
model_kwargs (`Dict[str, Any]`, *optional*):
Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
**model_kwargs)` function.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the specific pipeline init (see the documentation for the
corresponding pipeline class for possible values).
Returns:
[`Pipeline`]: A suitable pipeline for the task.
Examples:
```python
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
>>> # Sentiment analysis pipeline
>>> analyzer = pipeline("sentiment-analysis")
>>> # Question answering pipeline, specifying the checkpoint identifier
>>> oracle = pipeline(
... "question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased"
... )
>>> # Named entity recognition pipeline, passing in a specific model and tokenizer
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer)
```"""
if model_kwargs is None:
model_kwargs = {}
# Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs,
# this is to keep BC).
use_auth_token = model_kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
hub_kwargs = {
"revision": revision,
"token": token,
"trust_remote_code": trust_remote_code,
"_commit_hash": None,
}
if task is None and model is None:
raise RuntimeError(
"Impossible to instantiate a pipeline without either a task or a model "
"being specified. "
"Please provide a task class or a model"
)
if model is None and tokenizer is not None:
raise RuntimeError(
"Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer"
" may not be compatible with the default model. Please provide a PreTrainedModel class or a"
" path/identifier to a pretrained model when providing tokenizer."
)
if model is None and feature_extractor is not None:
raise RuntimeError(
"Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided"
" feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class"
" or a path/identifier to a pretrained model when providing feature_extractor."
)
if isinstance(model, Path):
model = str(model)
# Config is the primordial information item.
# Instantiate config if needed
if isinstance(config, str):
config = AutoConfig.from_pretrained(config, _from_pipeline=task, **hub_kwargs, **model_kwargs)
hub_kwargs["_commit_hash"] = config._commit_hash
elif config is None and isinstance(model, str):
# Check for an adapter file in the model path if PEFT is available
if is_peft_available():
subfolder = hub_kwargs.get("subfolder", None)
maybe_adapter_path = find_adapter_config_file(
model,
revision=revision,
token=use_auth_token,
subfolder=subfolder,
)
if maybe_adapter_path is not None:
with open(maybe_adapter_path, "r", encoding="utf-8") as f:
adapter_config = json.load(f)
model = adapter_config["base_model_name_or_path"]
config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
hub_kwargs["_commit_hash"] = config._commit_hash
custom_tasks = {}
if config is not None and len(getattr(config, "custom_pipelines", {})) > 0:
custom_tasks = config.custom_pipelines
if task is None and trust_remote_code is not False:
if len(custom_tasks) == 1:
task = list(custom_tasks.keys())[0]
else:
raise RuntimeError(
"We can't infer the task automatically for this model as there are multiple tasks available. Pick "
f"one in {', '.join(custom_tasks.keys())}"
)
if task is None and model is not None:
if not isinstance(model, str):
raise RuntimeError(
"Inferring the task automatically requires to check the hub with a model_id defined as a `str`."
f"{model} is not a valid model_id."
)
task = get_task(model, use_auth_token)
# Retrieve the task
if task in custom_tasks:
normalized_task = task
targeted_task, task_options = clean_custom_task(custom_tasks[task])
if pipeline_class is None:
if not trust_remote_code:
raise ValueError(
"Loading this pipeline requires you to execute the code in the pipeline file in that"
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
" set the option `trust_remote_code=True` to remove this error."
)
class_ref = targeted_task["impl"]
pipeline_class = get_class_from_dynamic_module(
class_ref, model, revision=revision, use_auth_token=use_auth_token
)
else:
normalized_task, targeted_task, task_options = check_task(task)
if pipeline_class is None:
pipeline_class = targeted_task["impl"]
# Use default model/config/tokenizer for the task if no model is provided
if model is None:
# At that point framework might still be undetermined
model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options)
revision = revision if revision is not None else default_revision
logger.warning(
f"No model was supplied, defaulted to {model} and revision"
f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n"
"Using a pipeline without specifying a model name and revision in production is not recommended."
)
if config is None and isinstance(model, str):
config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
hub_kwargs["_commit_hash"] = config._commit_hash
if device_map is not None:
if "device_map" in model_kwargs:
raise ValueError(
'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those'
" arguments might conflict, use only one.)"
)
if device is not None:
logger.warning(
"Both `device` and `device_map` are specified. `device` will override `device_map`. You"
" will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`."
)
model_kwargs["device_map"] = device_map
if torch_dtype is not None:
if "torch_dtype" in model_kwargs:
raise ValueError(
'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those'
" arguments might conflict, use only one.)"
)
model_kwargs["torch_dtype"] = torch_dtype
model_name = model if isinstance(model, str) else None
# Load the correct model if possible
# Infer the framework from the model if not already defined
if isinstance(model, str) or framework is None:
model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]}
framework, model = infer_framework_load_model(
model,
model_classes=model_classes,
config=config,
framework=framework,
task=task,
**hub_kwargs,
**model_kwargs,
)
model_config = model.config
hub_kwargs["_commit_hash"] = model.config._commit_hash
load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None
load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None
load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None
# If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while
# `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some
# vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`.
# TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue.
# This block is only temporarily to make CI green.
if load_image_processor and load_feature_extractor:
load_feature_extractor = False
if (
tokenizer is None
and not load_tokenizer
and normalized_task not in NO_TOKENIZER_TASKS
# Using class name to avoid importing the real class.
and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS
):
# This is a special category of models, that are fusions of multiple models
# so the model_config might not define a tokenizer, but it seems to be
# necessary for the task, so we're force-trying to load it.
load_tokenizer = True
if (
image_processor is None
and not load_image_processor
and normalized_task not in NO_IMAGE_PROCESSOR_TASKS
# Using class name to avoid importing the real class.
and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS
and normalized_task != "automatic-speech-recognition"
):
# This is a special category of models, that are fusions of multiple models
# so the model_config might not define a tokenizer, but it seems to be
# necessary for the task, so we're force-trying to load it.
load_image_processor = True
if (
feature_extractor is None
and not load_feature_extractor
and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS
# Using class name to avoid importing the real class.
and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS
):
# This is a special category of models, that are fusions of multiple models
# so the model_config might not define a tokenizer, but it seems to be
# necessary for the task, so we're force-trying to load it.
load_feature_extractor = True
if task in NO_TOKENIZER_TASKS:
# These will never require a tokenizer.
# the model on the other hand might have a tokenizer, but
# the files could be missing from the hub, instead of failing
# on such repos, we just force to not load it.
load_tokenizer = False
if task in NO_FEATURE_EXTRACTOR_TASKS:
load_feature_extractor = False
if task in NO_IMAGE_PROCESSOR_TASKS:
load_image_processor = False
if load_tokenizer:
# Try to infer tokenizer from model or config name (if provided as str)
if tokenizer is None:
if isinstance(model_name, str):
tokenizer = model_name
elif isinstance(config, str):
tokenizer = config
else:
# Impossible to guess what is the right tokenizer here
raise Exception(
"Impossible to guess which tokenizer to use. "
"Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
)
# Instantiate tokenizer if needed
if isinstance(tokenizer, (str, tuple)):
if isinstance(tokenizer, tuple):
# For tuple we have (tokenizer name, {kwargs})
use_fast = tokenizer[1].pop("use_fast", use_fast)
tokenizer_identifier = tokenizer[0]
tokenizer_kwargs = tokenizer[1]
else:
tokenizer_identifier = tokenizer
tokenizer_kwargs = model_kwargs.copy()
tokenizer_kwargs.pop("torch_dtype", None)
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs
)
if load_image_processor:
# Try to infer image processor from model or config name (if provided as str)
if image_processor is None:
if isinstance(model_name, str):
image_processor = model_name
elif isinstance(config, str):
image_processor = config
# Backward compatibility, as `feature_extractor` used to be the name
# for `ImageProcessor`.
elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor):
image_processor = feature_extractor
else:
# Impossible to guess what is the right image_processor here
raise Exception(
"Impossible to guess which image processor to use. "
"Please provide a PreTrainedImageProcessor class or a path/identifier "
"to a pretrained image processor."
)
# Instantiate image_processor if needed
if isinstance(image_processor, (str, tuple)):
image_processor = AutoImageProcessor.from_pretrained(
image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs
)
if load_feature_extractor:
# Try to infer feature extractor from model or config name (if provided as str)
if feature_extractor is None:
if isinstance(model_name, str):
feature_extractor = model_name
elif isinstance(config, str):
feature_extractor = config
else:
# Impossible to guess what is the right feature_extractor here
raise Exception(
"Impossible to guess which feature extractor to use. "
"Please provide a PreTrainedFeatureExtractor class or a path/identifier "
"to a pretrained feature extractor."
)
# Instantiate feature_extractor if needed
if isinstance(feature_extractor, (str, tuple)):
feature_extractor = AutoFeatureExtractor.from_pretrained(
feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs
)
if (
feature_extractor._processor_class
and feature_extractor._processor_class.endswith("WithLM")
and isinstance(model_name, str)
):
try:
import kenlm # to trigger `ImportError` if not installed
from pyctcdecode import BeamSearchDecoderCTC
if os.path.isdir(model_name) or os.path.isfile(model_name):
decoder = BeamSearchDecoderCTC.load_from_dir(model_name)
else:
language_model_glob = os.path.join(
BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*"
)
alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME
allow_patterns = [language_model_glob, alphabet_filename]
decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns)
kwargs["decoder"] = decoder
except ImportError as e:
logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}")
if not is_kenlm_available():
logger.warning("Try to install `kenlm`: `pip install kenlm")
if not is_pyctcdecode_available():
logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode")
if task == "translation" and model.config.task_specific_params:
for key in model.config.task_specific_params:
if key.startswith("translation"):
task = key
warnings.warn(
f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"',
UserWarning,
)
break
if tokenizer is not None:
kwargs["tokenizer"] = tokenizer
if feature_extractor is not None:
kwargs["feature_extractor"] = feature_extractor
if torch_dtype is not None:
kwargs["torch_dtype"] = torch_dtype
if image_processor is not None:
kwargs["image_processor"] = image_processor
if device is not None:
kwargs["device"] = device
return pipeline_class(model=model, framework=framework, task=task, **kwargs)
|