File size: 20,636 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLAP model configuration"""

import os
from typing import Union

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = {
    "laion/clap-htsat-fused": "https://huggingface.co/laion/clap-htsat-fused/resolve/main/config.json",
    "laion/clap-htsat-unfused": "https://huggingface.co/laion/clap-htsat-unfused/resolve/main/config.json",
}


class ClapTextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the CLAP
    [calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ClapTextModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`,
            `"relu"`, `"silu"` and `"relu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`].
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        projection_dim (`int`, *optional*, defaults to 512)
            Dimension of the projection head of the `ClapTextModelWithProjection`.

    Examples:

    ```python
    >>> from transformers import ClapTextConfig, ClapTextModel

    >>> # Initializing a CLAP text configuration
    >>> configuration = ClapTextConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = ClapTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "clap_text_model"

    def __init__(
        self,
        vocab_size=50265,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=514,
        type_vocab_size=1,
        initializer_factor=1.0,
        layer_norm_eps=1e-12,
        projection_dim=512,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        position_embedding_type="absolute",
        use_cache=True,
        projection_hidden_act="relu",
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_factor = initializer_factor
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.use_cache = use_cache
        self.projection_hidden_act = projection_hidden_act
        self.projection_dim = projection_dim

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the text config dict if we are loading from ClapConfig
        if config_dict.get("model_type") == "clap":
            config_dict = config_dict["text_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class ClapAudioConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a
    CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP
    [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        window_size (`int`, *optional*, defaults to 8):
            Image size of the spectrogram
        num_mel_bins (`int`, *optional*, defaults to 64):
            Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class.
        spec_size (`int`, *optional*, defaults to 256):
            Desired input size of the spectrogram that the model supports. It can be different from the output of the
            `ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size`
            of the audio models.
        hidden_act (`str`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        patch_size (`int`, *optional*, defaults to 4):
            Patch size for the audio spectrogram
        patch_stride (`list`, *optional*, defaults to `[4, 4]`):
            Patch stride for the audio spectrogram
        num_classes (`int`, *optional*, defaults to 527):
            Number of classes used for the head training
        hidden_size (`int`, *optional*, defaults to 768):
            Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's
            output,which is sent to the projection MLP layer.
        projection_dim (`int`, *optional*, defaults to 512):
            Hidden size of the projection layer.
        depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`):
            Depths used for the Swin Layers of the audio model
        num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`):
            Number of attention heads used for the Swin Layers of the audio model
        enable_fusion (`bool`, *optional*, defaults to `False`):
            Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the
            best results.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the encoder.
        fusion_type (`[type]`, *optional*):
            Fusion type used for the patch fusion.
        patch_embed_input_channels (`int`, *optional*, defaults to 1):
            Number of channels used for the input spectrogram
        flatten_patch_embeds (`bool`, *optional*, defaults to `True`):
            Whether or not to flatten the patch embeddings
        patch_embeds_hidden_size (`int`, *optional*, defaults to 96):
            Hidden size of the patch embeddings. It is used as the number of output channels.
        enable_patch_layer_norm (`bool`, *optional*, defaults to `True`):
            Whether or not to enable layer normalization for the patch embeddings
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            Drop path rate for the patch fusion
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to add a bias to the query, key, value projections.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            Ratio of the mlp hidden dim to embedding dim.
        aff_block_r (`int`, *optional*, defaults to 4):
            downsize_ratio used in the AudioFF block
        num_hidden_layers (`int`, *optional*, defaults to 4):
            Number of hidden layers in the Transformer encoder.
        projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        layer_norm_eps (`[type]`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import ClapAudioConfig, ClapAudioModel

    >>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration
    >>> configuration = ClapAudioConfig()

    >>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration
    >>> model = ClapAudioModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "clap_audio_model"

    def __init__(
        self,
        window_size=8,
        num_mel_bins=64,
        spec_size=256,
        hidden_act="gelu",
        patch_size=4,
        patch_stride=[4, 4],
        num_classes=527,
        hidden_size=768,
        projection_dim=512,
        depths=[2, 2, 6, 2],
        num_attention_heads=[4, 8, 16, 32],
        enable_fusion=False,
        hidden_dropout_prob=0.1,
        fusion_type=None,
        patch_embed_input_channels=1,
        flatten_patch_embeds=True,
        patch_embeds_hidden_size=96,
        enable_patch_layer_norm=True,
        drop_path_rate=0.0,
        attention_probs_dropout_prob=0.0,
        qkv_bias=True,
        mlp_ratio=4.0,
        aff_block_r=4,
        num_hidden_layers=4,
        projection_hidden_act="relu",
        layer_norm_eps=1e-5,
        initializer_factor=1.0,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.window_size = window_size
        self.num_mel_bins = num_mel_bins
        self.spec_size = spec_size
        self.patch_size = patch_size
        self.patch_stride = patch_stride
        self.num_classes = num_classes
        self.hidden_size = hidden_size
        self.depths = depths
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.window_size = window_size
        self.enable_fusion = enable_fusion
        self.fusion_type = fusion_type
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.projection_dim = projection_dim
        self.flatten_patch_embeds = flatten_patch_embeds
        self.patch_embeds_hidden_size = patch_embeds_hidden_size
        self.enable_patch_layer_norm = enable_patch_layer_norm
        self.drop_path_rate = drop_path_rate
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.qkv_bias = qkv_bias
        self.mlp_ratio = mlp_ratio
        self.patch_embed_input_channels = patch_embed_input_channels
        self.aff_block_r = aff_block_r
        self.layer_norm_eps = layer_norm_eps
        self.initializer_factor = initializer_factor
        self.projection_hidden_act = projection_hidden_act

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the audio config dict if we are loading from ClapConfig
        if config_dict.get("model_type") == "clap":
            config_dict = config_dict["audio_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class ClapConfig(PretrainedConfig):
    r"""
    [`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate
    a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the CLAP
    [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`ClapTextConfig`].
        audio_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`ClapAudioConfig`].
        logit_scale_init_value (`float`, *optional*, defaults to 14.29):
            The inital value of the *logit_scale* paramter. Default is used as per the original CLAP implementation.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimentionality of text and audio projection layers.
        projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
            Activation function for the projection layers.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            Factor to scale the initialization of the model weights.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import ClapConfig, ClapModel

    >>> # Initializing a ClapConfig with laion-ai/base style configuration
    >>> configuration = ClapConfig()

    >>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration
    >>> model = ClapModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig
    >>> from transformers import ClapTextConfig, ClapAudioConfig

    >>> # Initializing a ClapText and ClapAudioConfig configuration
    >>> config_text = ClapTextConfig()
    >>> config_audio = ClapAudioConfig()

    >>> config = ClapConfig.from_text_audio_configs(config_text, config_audio)
    ```"""

    model_type = "clap"

    def __init__(
        self,
        text_config=None,
        audio_config=None,
        logit_scale_init_value=(1 / 0.07),
        projection_dim=512,
        projection_hidden_act="relu",
        initializer_factor=1.0,
        **kwargs,
    ):
        super().__init__(**kwargs)

        if text_config is None:
            text_config = {}
            logger.info("text_config is None. Initializing the ClapTextConfig with default values.")

        if audio_config is None:
            audio_config = {}
            logger.info("audio_config is None. initializing the ClapAudioConfig with default values.")

        self.text_config = ClapTextConfig(**text_config)
        self.audio_config = ClapAudioConfig(**audio_config)
        self.text_config.projection_dim = projection_dim
        self.audio_config.projection_dim = projection_dim

        self.text_config.projection_hidden_act = projection_hidden_act
        self.audio_config.projection_hidden_act = projection_hidden_act

        self.projection_dim = projection_dim
        self.projection_hidden_act = projection_hidden_act
        self.hidden_size = self.text_config.hidden_size

        self.logit_scale_init_value = logit_scale_init_value
        self.initializer_factor = initializer_factor
        self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths)

    @classmethod
    def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs):
        r"""
        Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model
        configuration.

        Returns:
            [`ClapConfig`]: An instance of a configuration object
        """

        return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs)