# Copyright (c) Facebook, Inc. and its affiliates. from typing import List import fvcore.nn.weight_init as weight_init import torch from torch import nn from torch.nn import functional as F from detectron2.config import configurable from detectron2.layers import Conv2d, ConvTranspose2d, ShapeSpec, cat, get_norm from detectron2.layers.wrappers import move_device_like from detectron2.structures import Instances from detectron2.utils.events import get_event_storage from detectron2.utils.registry import Registry __all__ = [ "BaseMaskRCNNHead", "MaskRCNNConvUpsampleHead", "build_mask_head", "ROI_MASK_HEAD_REGISTRY", ] ROI_MASK_HEAD_REGISTRY = Registry("ROI_MASK_HEAD") ROI_MASK_HEAD_REGISTRY.__doc__ = """ Registry for mask heads, which predicts instance masks given per-region features. The registered object will be called with `obj(cfg, input_shape)`. """ @torch.jit.unused def mask_rcnn_loss(pred_mask_logits: torch.Tensor, instances: List[Instances], vis_period: int = 0): """ Compute the mask prediction loss defined in the Mask R-CNN paper. Args: pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask) for class-specific or class-agnostic, where B is the total number of predicted masks in all images, C is the number of foreground classes, and Hmask, Wmask are the height and width of the mask predictions. The values are logits. instances (list[Instances]): A list of N Instances, where N is the number of images in the batch. These instances are in 1:1 correspondence with the pred_mask_logits. The ground-truth labels (class, box, mask, ...) associated with each instance are stored in fields. vis_period (int): the period (in steps) to dump visualization. Returns: mask_loss (Tensor): A scalar tensor containing the loss. """ cls_agnostic_mask = pred_mask_logits.size(1) == 1 total_num_masks = pred_mask_logits.size(0) mask_side_len = pred_mask_logits.size(2) assert pred_mask_logits.size(2) == pred_mask_logits.size(3), "Mask prediction must be square!" gt_classes = [] gt_masks = [] for instances_per_image in instances: if len(instances_per_image) == 0: continue if not cls_agnostic_mask: gt_classes_per_image = instances_per_image.gt_classes.to(dtype=torch.int64) gt_classes.append(gt_classes_per_image) gt_masks_per_image = instances_per_image.gt_masks.crop_and_resize( instances_per_image.proposal_boxes.tensor, mask_side_len ).to(device=pred_mask_logits.device) # A tensor of shape (N, M, M), N=#instances in the image; M=mask_side_len gt_masks.append(gt_masks_per_image) if len(gt_masks) == 0: return pred_mask_logits.sum() * 0 gt_masks = cat(gt_masks, dim=0) if cls_agnostic_mask: pred_mask_logits = pred_mask_logits[:, 0] else: indices = torch.arange(total_num_masks) gt_classes = cat(gt_classes, dim=0) pred_mask_logits = pred_mask_logits[indices, gt_classes] if gt_masks.dtype == torch.bool: gt_masks_bool = gt_masks else: # Here we allow gt_masks to be float as well (depend on the implementation of rasterize()) gt_masks_bool = gt_masks > 0.5 gt_masks = gt_masks.to(dtype=torch.float32) # Log the training accuracy (using gt classes and sigmoid(0.0) == 0.5 threshold) mask_incorrect = (pred_mask_logits > 0.0) != gt_masks_bool mask_accuracy = 1 - (mask_incorrect.sum().item() / max(mask_incorrect.numel(), 1.0)) num_positive = gt_masks_bool.sum().item() false_positive = (mask_incorrect & ~gt_masks_bool).sum().item() / max( gt_masks_bool.numel() - num_positive, 1.0 ) false_negative = (mask_incorrect & gt_masks_bool).sum().item() / max(num_positive, 1.0) storage = get_event_storage() storage.put_scalar("mask_rcnn/accuracy", mask_accuracy) storage.put_scalar("mask_rcnn/false_positive", false_positive) storage.put_scalar("mask_rcnn/false_negative", false_negative) if vis_period > 0 and storage.iter % vis_period == 0: pred_masks = pred_mask_logits.sigmoid() vis_masks = torch.cat([pred_masks, gt_masks], axis=2) name = "Left: mask prediction; Right: mask GT" for idx, vis_mask in enumerate(vis_masks): vis_mask = torch.stack([vis_mask] * 3, axis=0) storage.put_image(name + f" ({idx})", vis_mask) mask_loss = F.binary_cross_entropy_with_logits(pred_mask_logits, gt_masks, reduction="mean") return mask_loss def mask_rcnn_inference(pred_mask_logits: torch.Tensor, pred_instances: List[Instances]): """ Convert pred_mask_logits to estimated foreground probability masks while also extracting only the masks for the predicted classes in pred_instances. For each predicted box, the mask of the same class is attached to the instance by adding a new "pred_masks" field to pred_instances. Args: pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask) for class-specific or class-agnostic, where B is the total number of predicted masks in all images, C is the number of foreground classes, and Hmask, Wmask are the height and width of the mask predictions. The values are logits. pred_instances (list[Instances]): A list of N Instances, where N is the number of images in the batch. Each Instances must have field "pred_classes". Returns: None. pred_instances will contain an extra "pred_masks" field storing a mask of size (Hmask, Wmask) for predicted class. Note that the masks are returned as a soft (non-quantized) masks the resolution predicted by the network; post-processing steps, such as resizing the predicted masks to the original image resolution and/or binarizing them, is left to the caller. """ cls_agnostic_mask = pred_mask_logits.size(1) == 1 if cls_agnostic_mask: mask_probs_pred = pred_mask_logits.sigmoid() else: # Select masks corresponding to the predicted classes num_masks = pred_mask_logits.shape[0] class_pred = cat([i.pred_classes for i in pred_instances]) device = ( class_pred.device if torch.jit.is_scripting() else ("cpu" if torch.jit.is_tracing() else class_pred.device) ) indices = move_device_like(torch.arange(num_masks, device=device), class_pred) mask_probs_pred = pred_mask_logits[indices, class_pred][:, None].sigmoid() # mask_probs_pred.shape: (B, 1, Hmask, Wmask) num_boxes_per_image = [len(i) for i in pred_instances] mask_probs_pred = mask_probs_pred.split(num_boxes_per_image, dim=0) for prob, instances in zip(mask_probs_pred, pred_instances): instances.pred_masks = prob # (1, Hmask, Wmask) class BaseMaskRCNNHead(nn.Module): """ Implement the basic Mask R-CNN losses and inference logic described in :paper:`Mask R-CNN` """ @configurable def __init__(self, *, loss_weight: float = 1.0, vis_period: int = 0): """ NOTE: this interface is experimental. Args: loss_weight (float): multiplier of the loss vis_period (int): visualization period """ super().__init__() self.vis_period = vis_period self.loss_weight = loss_weight @classmethod def from_config(cls, cfg, input_shape): return {"vis_period": cfg.VIS_PERIOD} def forward(self, x, instances: List[Instances]): """ Args: x: input region feature(s) provided by :class:`ROIHeads`. instances (list[Instances]): contains the boxes & labels corresponding to the input features. Exact format is up to its caller to decide. Typically, this is the foreground instances in training, with "proposal_boxes" field and other gt annotations. In inference, it contains boxes that are already predicted. Returns: A dict of losses in training. The predicted "instances" in inference. """ x = self.layers(x) if self.training: return {"loss_mask": mask_rcnn_loss(x, instances, self.vis_period) * self.loss_weight} else: mask_rcnn_inference(x, instances) return instances def layers(self, x): """ Neural network layers that makes predictions from input features. """ raise NotImplementedError # To get torchscript support, we make the head a subclass of `nn.Sequential`. # Therefore, to add new layers in this head class, please make sure they are # added in the order they will be used in forward(). @ROI_MASK_HEAD_REGISTRY.register() class MaskRCNNConvUpsampleHead(BaseMaskRCNNHead, nn.Sequential): """ A mask head with several conv layers, plus an upsample layer (with `ConvTranspose2d`). Predictions are made with a final 1x1 conv layer. """ @configurable def __init__(self, input_shape: ShapeSpec, *, num_classes, conv_dims, conv_norm="", **kwargs): """ NOTE: this interface is experimental. Args: input_shape (ShapeSpec): shape of the input feature num_classes (int): the number of foreground classes (i.e. background is not included). 1 if using class agnostic prediction. conv_dims (list[int]): a list of N>0 integers representing the output dimensions of N-1 conv layers and the last upsample layer. conv_norm (str or callable): normalization for the conv layers. See :func:`detectron2.layers.get_norm` for supported types. """ super().__init__(**kwargs) assert len(conv_dims) >= 1, "conv_dims have to be non-empty!" self.conv_norm_relus = [] cur_channels = input_shape.channels for k, conv_dim in enumerate(conv_dims[:-1]): conv = Conv2d( cur_channels, conv_dim, kernel_size=3, stride=1, padding=1, bias=not conv_norm, norm=get_norm(conv_norm, conv_dim), activation=nn.ReLU(), ) self.add_module("mask_fcn{}".format(k + 1), conv) self.conv_norm_relus.append(conv) cur_channels = conv_dim self.deconv = ConvTranspose2d( cur_channels, conv_dims[-1], kernel_size=2, stride=2, padding=0 ) self.add_module("deconv_relu", nn.ReLU()) cur_channels = conv_dims[-1] self.predictor = Conv2d(cur_channels, num_classes, kernel_size=1, stride=1, padding=0) for layer in self.conv_norm_relus + [self.deconv]: weight_init.c2_msra_fill(layer) # use normal distribution initialization for mask prediction layer nn.init.normal_(self.predictor.weight, std=0.001) if self.predictor.bias is not None: nn.init.constant_(self.predictor.bias, 0) @classmethod def from_config(cls, cfg, input_shape): ret = super().from_config(cfg, input_shape) conv_dim = cfg.MODEL.ROI_MASK_HEAD.CONV_DIM num_conv = cfg.MODEL.ROI_MASK_HEAD.NUM_CONV ret.update( conv_dims=[conv_dim] * (num_conv + 1), # +1 for ConvTranspose conv_norm=cfg.MODEL.ROI_MASK_HEAD.NORM, input_shape=input_shape, ) if cfg.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK: ret["num_classes"] = 1 else: ret["num_classes"] = cfg.MODEL.ROI_HEADS.NUM_CLASSES return ret def layers(self, x): for layer in self: x = layer(x) return x def build_mask_head(cfg, input_shape): """ Build a mask head defined by `cfg.MODEL.ROI_MASK_HEAD.NAME`. """ name = cfg.MODEL.ROI_MASK_HEAD.NAME return ROI_MASK_HEAD_REGISTRY.get(name)(cfg, input_shape)