# Copyright (c) Facebook, Inc. and its affiliates. import logging from typing import Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import functional as F from detectron2.config import configurable from detectron2.data.detection_utils import get_fed_loss_cls_weights from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple from detectron2.modeling.box_regression import Box2BoxTransform, _dense_box_regression_loss from detectron2.structures import Boxes, Instances from detectron2.utils.events import get_event_storage __all__ = ["fast_rcnn_inference", "FastRCNNOutputLayers"] logger = logging.getLogger(__name__) """ Shape shorthand in this module: N: number of images in the minibatch R: number of ROIs, combined over all images, in the minibatch Ri: number of ROIs in image i K: number of foreground classes. E.g.,there are 80 foreground classes in COCO. Naming convention: deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box transform (see :class:`box_regression.Box2BoxTransform`). pred_class_logits: predicted class scores in [-inf, +inf]; use softmax(pred_class_logits) to estimate P(class). gt_classes: ground-truth classification labels in [0, K], where [0, K) represent foreground object classes and K represents the background class. pred_proposal_deltas: predicted box2box transform deltas for transforming proposals to detection box predictions. gt_proposal_deltas: ground-truth box2box transform deltas """ def fast_rcnn_inference( boxes: List[torch.Tensor], scores: List[torch.Tensor], image_shapes: List[Tuple[int, int]], score_thresh: float, nms_thresh: float, topk_per_image: int, ): """ Call `fast_rcnn_inference_single_image` for all images. Args: boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic boxes for each image. Element i has shape (Ri, K * 4) if doing class-specific regression, or (Ri, 4) if doing class-agnostic regression, where Ri is the number of predicted objects for image i. This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`. scores (list[Tensor]): A list of Tensors of predicted class scores for each image. Element i has shape (Ri, K + 1), where Ri is the number of predicted objects for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`. image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. score_thresh (float): Only return detections with a confidence score exceeding this threshold. nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. topk_per_image (int): The number of top scoring detections to return. Set < 0 to return all detections. Returns: instances: (list[Instances]): A list of N instances, one for each image in the batch, that stores the topk most confidence detections. kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates the corresponding boxes/scores index in [0, Ri) from the input, for image i. """ result_per_image = [ fast_rcnn_inference_single_image( boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image ) for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes) ] return [x[0] for x in result_per_image], [x[1] for x in result_per_image] def _log_classification_stats(pred_logits, gt_classes, prefix="fast_rcnn"): """ Log the classification metrics to EventStorage. Args: pred_logits: Rx(K+1) logits. The last column is for background class. gt_classes: R labels """ num_instances = gt_classes.numel() if num_instances == 0: return pred_classes = pred_logits.argmax(dim=1) bg_class_ind = pred_logits.shape[1] - 1 fg_inds = (gt_classes >= 0) & (gt_classes < bg_class_ind) num_fg = fg_inds.nonzero().numel() fg_gt_classes = gt_classes[fg_inds] fg_pred_classes = pred_classes[fg_inds] num_false_negative = (fg_pred_classes == bg_class_ind).nonzero().numel() num_accurate = (pred_classes == gt_classes).nonzero().numel() fg_num_accurate = (fg_pred_classes == fg_gt_classes).nonzero().numel() storage = get_event_storage() storage.put_scalar(f"{prefix}/cls_accuracy", num_accurate / num_instances) if num_fg > 0: storage.put_scalar(f"{prefix}/fg_cls_accuracy", fg_num_accurate / num_fg) storage.put_scalar(f"{prefix}/false_negative", num_false_negative / num_fg) def fast_rcnn_inference_single_image( boxes, scores, image_shape: Tuple[int, int], score_thresh: float, nms_thresh: float, topk_per_image: int, ): """ Single-image inference. Return bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). Args: Same as `fast_rcnn_inference`, but with boxes, scores, and image shapes per image. Returns: Same as `fast_rcnn_inference`, but for only one image. """ valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) if not valid_mask.all(): boxes = boxes[valid_mask] scores = scores[valid_mask] scores = scores[:, :-1] num_bbox_reg_classes = boxes.shape[1] // 4 # Convert to Boxes to use the `clip` function ... boxes = Boxes(boxes.reshape(-1, 4)) boxes.clip(image_shape) boxes = boxes.tensor.view(-1, num_bbox_reg_classes, 4) # R x C x 4 # 1. Filter results based on detection scores. It can make NMS more efficient # by filtering out low-confidence detections. filter_mask = scores > score_thresh # R x K # R' x 2. First column contains indices of the R predictions; # Second column contains indices of classes. filter_inds = filter_mask.nonzero() if num_bbox_reg_classes == 1: boxes = boxes[filter_inds[:, 0], 0] else: boxes = boxes[filter_mask] scores = scores[filter_mask] # 2. Apply NMS for each class independently. keep = batched_nms(boxes, scores, filter_inds[:, 1], nms_thresh) if topk_per_image >= 0: keep = keep[:topk_per_image] boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep] result = Instances(image_shape) result.pred_boxes = Boxes(boxes) result.scores = scores result.pred_classes = filter_inds[:, 1] return result, filter_inds[:, 0] class FastRCNNOutputLayers(nn.Module): """ Two linear layers for predicting Fast R-CNN outputs: 1. proposal-to-detection box regression deltas 2. classification scores """ @configurable def __init__( self, input_shape: ShapeSpec, *, box2box_transform, num_classes: int, test_score_thresh: float = 0.0, test_nms_thresh: float = 0.5, test_topk_per_image: int = 100, cls_agnostic_bbox_reg: bool = False, smooth_l1_beta: float = 0.0, box_reg_loss_type: str = "smooth_l1", loss_weight: Union[float, Dict[str, float]] = 1.0, use_fed_loss: bool = False, use_sigmoid_ce: bool = False, get_fed_loss_cls_weights: Optional[Callable] = None, fed_loss_num_classes: int = 50, ): """ NOTE: this interface is experimental. Args: input_shape (ShapeSpec): shape of the input feature to this module box2box_transform (Box2BoxTransform or Box2BoxTransformRotated): num_classes (int): number of foreground classes test_score_thresh (float): threshold to filter predictions results. test_nms_thresh (float): NMS threshold for prediction results. test_topk_per_image (int): number of top predictions to produce per image. cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression smooth_l1_beta (float): transition point from L1 to L2 loss. Only used if `box_reg_loss_type` is "smooth_l1" box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou", "diou", "ciou" loss_weight (float|dict): weights to use for losses. Can be single float for weighting all losses, or a dict of individual weightings. Valid dict keys are: * "loss_cls": applied to classification loss * "loss_box_reg": applied to box regression loss use_fed_loss (bool): whether to use federated loss which samples additional negative classes to calculate the loss use_sigmoid_ce (bool): whether to calculate the loss using weighted average of binary cross entropy with logits. This could be used together with federated loss get_fed_loss_cls_weights (Callable): a callable which takes dataset name and frequency weight power, and returns the probabilities to sample negative classes for federated loss. The implementation can be found in detectron2/data/detection_utils.py fed_loss_num_classes (int): number of federated classes to keep in total """ super().__init__() if isinstance(input_shape, int): # some backward compatibility input_shape = ShapeSpec(channels=input_shape) self.num_classes = num_classes input_size = input_shape.channels * (input_shape.width or 1) * (input_shape.height or 1) # prediction layer for num_classes foreground classes and one background class (hence + 1) self.cls_score = nn.Linear(input_size, num_classes + 1) num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes box_dim = len(box2box_transform.weights) self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for l in [self.cls_score, self.bbox_pred]: nn.init.constant_(l.bias, 0) self.box2box_transform = box2box_transform self.smooth_l1_beta = smooth_l1_beta self.test_score_thresh = test_score_thresh self.test_nms_thresh = test_nms_thresh self.test_topk_per_image = test_topk_per_image self.box_reg_loss_type = box_reg_loss_type if isinstance(loss_weight, float): loss_weight = {"loss_cls": loss_weight, "loss_box_reg": loss_weight} self.loss_weight = loss_weight self.use_fed_loss = use_fed_loss self.use_sigmoid_ce = use_sigmoid_ce self.fed_loss_num_classes = fed_loss_num_classes if self.use_fed_loss: assert self.use_sigmoid_ce, "Please use sigmoid cross entropy loss with federated loss" fed_loss_cls_weights = get_fed_loss_cls_weights() assert ( len(fed_loss_cls_weights) == self.num_classes ), "Please check the provided fed_loss_cls_weights. Their size should match num_classes" self.register_buffer("fed_loss_cls_weights", fed_loss_cls_weights) @classmethod def from_config(cls, cfg, input_shape): return { "input_shape": input_shape, "box2box_transform": Box2BoxTransform(weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS), # fmt: off "num_classes" : cfg.MODEL.ROI_HEADS.NUM_CLASSES, "cls_agnostic_bbox_reg" : cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG, "smooth_l1_beta" : cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA, "test_score_thresh" : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST, "test_nms_thresh" : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST, "test_topk_per_image" : cfg.TEST.DETECTIONS_PER_IMAGE, "box_reg_loss_type" : cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE, "loss_weight" : {"loss_box_reg": cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT}, # noqa "use_fed_loss" : cfg.MODEL.ROI_BOX_HEAD.USE_FED_LOSS, "use_sigmoid_ce" : cfg.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE, "get_fed_loss_cls_weights" : lambda: get_fed_loss_cls_weights(dataset_names=cfg.DATASETS.TRAIN, freq_weight_power=cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_FREQ_WEIGHT_POWER), # noqa "fed_loss_num_classes" : cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_NUM_CLASSES, # fmt: on } def forward(self, x): """ Args: x: per-region features of shape (N, ...) for N bounding boxes to predict. Returns: (Tensor, Tensor): First tensor: shape (N,K+1), scores for each of the N box. Each row contains the scores for K object categories and 1 background class. Second tensor: bounding box regression deltas for each box. Shape is shape (N,Kx4), or (N,4) for class-agnostic regression. """ if x.dim() > 2: x = torch.flatten(x, start_dim=1) scores = self.cls_score(x) proposal_deltas = self.bbox_pred(x) return scores, proposal_deltas def losses(self, predictions, proposals): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. The fields ``proposal_boxes``, ``gt_boxes``, ``gt_classes`` are expected. Returns: Dict[str, Tensor]: dict of losses """ scores, proposal_deltas = predictions # parse classification outputs gt_classes = ( cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0) ) _log_classification_stats(scores, gt_classes) # parse box regression outputs if len(proposals): proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4 assert not proposal_boxes.requires_grad, "Proposals should not require gradients!" # If "gt_boxes" does not exist, the proposals must be all negative and # should not be included in regression loss computation. # Here we just use proposal_boxes as an arbitrary placeholder because its # value won't be used in self.box_reg_loss(). gt_boxes = cat( [(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals], dim=0, ) else: proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device) if self.use_sigmoid_ce: loss_cls = self.sigmoid_cross_entropy_loss(scores, gt_classes) else: loss_cls = cross_entropy(scores, gt_classes, reduction="mean") losses = { "loss_cls": loss_cls, "loss_box_reg": self.box_reg_loss( proposal_boxes, gt_boxes, proposal_deltas, gt_classes ), } return {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()} # Implementation from https://github.com/xingyizhou/CenterNet2/blob/master/projects/CenterNet2/centernet/modeling/roi_heads/fed_loss.py # noqa # with slight modifications def get_fed_loss_classes(self, gt_classes, num_fed_loss_classes, num_classes, weight): """ Args: gt_classes: a long tensor of shape R that contains the gt class label of each proposal. num_fed_loss_classes: minimum number of classes to keep when calculating federated loss. Will sample negative classes if number of unique gt_classes is smaller than this value. num_classes: number of foreground classes weight: probabilities used to sample negative classes Returns: Tensor: classes to keep when calculating the federated loss, including both unique gt classes and sampled negative classes. """ unique_gt_classes = torch.unique(gt_classes) prob = unique_gt_classes.new_ones(num_classes + 1).float() prob[-1] = 0 if len(unique_gt_classes) < num_fed_loss_classes: prob[:num_classes] = weight.float().clone() prob[unique_gt_classes] = 0 sampled_negative_classes = torch.multinomial( prob, num_fed_loss_classes - len(unique_gt_classes), replacement=False ) fed_loss_classes = torch.cat([unique_gt_classes, sampled_negative_classes]) else: fed_loss_classes = unique_gt_classes return fed_loss_classes # Implementation from https://github.com/xingyizhou/CenterNet2/blob/master/projects/CenterNet2/centernet/modeling/roi_heads/custom_fast_rcnn.py#L113 # noqa # with slight modifications def sigmoid_cross_entropy_loss(self, pred_class_logits, gt_classes): """ Args: pred_class_logits: shape (N, K+1), scores for each of the N box. Each row contains the scores for K object categories and 1 background class gt_classes: a long tensor of shape R that contains the gt class label of each proposal. """ if pred_class_logits.numel() == 0: return pred_class_logits.new_zeros([1])[0] N = pred_class_logits.shape[0] K = pred_class_logits.shape[1] - 1 target = pred_class_logits.new_zeros(N, K + 1) target[range(len(gt_classes)), gt_classes] = 1 target = target[:, :K] cls_loss = F.binary_cross_entropy_with_logits( pred_class_logits[:, :-1], target, reduction="none" ) if self.use_fed_loss: fed_loss_classes = self.get_fed_loss_classes( gt_classes, num_fed_loss_classes=self.fed_loss_num_classes, num_classes=K, weight=self.fed_loss_cls_weights, ) fed_loss_classes_mask = fed_loss_classes.new_zeros(K + 1) fed_loss_classes_mask[fed_loss_classes] = 1 fed_loss_classes_mask = fed_loss_classes_mask[:K] weight = fed_loss_classes_mask.view(1, K).expand(N, K).float() else: weight = 1 loss = torch.sum(cls_loss * weight) / N return loss def box_reg_loss(self, proposal_boxes, gt_boxes, pred_deltas, gt_classes): """ Args: proposal_boxes/gt_boxes are tensors with the same shape (R, 4 or 5). pred_deltas has shape (R, 4 or 5), or (R, num_classes * (4 or 5)). gt_classes is a long tensor of shape R, the gt class label of each proposal. R shall be the number of proposals. """ box_dim = proposal_boxes.shape[1] # 4 or 5 # Regression loss is only computed for foreground proposals (those matched to a GT) fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < self.num_classes))[0] if pred_deltas.shape[1] == box_dim: # cls-agnostic regression fg_pred_deltas = pred_deltas[fg_inds] else: fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[ fg_inds, gt_classes[fg_inds] ] loss_box_reg = _dense_box_regression_loss( [proposal_boxes[fg_inds]], self.box2box_transform, [fg_pred_deltas.unsqueeze(0)], [gt_boxes[fg_inds]], ..., self.box_reg_loss_type, self.smooth_l1_beta, ) # The reg loss is normalized using the total number of regions (R), not the number # of foreground regions even though the box regression loss is only defined on # foreground regions. Why? Because doing so gives equal training influence to # each foreground example. To see how, consider two different minibatches: # (1) Contains a single foreground region # (2) Contains 100 foreground regions # If we normalize by the number of foreground regions, the single example in # minibatch (1) will be given 100 times as much influence as each foreground # example in minibatch (2). Normalizing by the total number of regions, R, # means that the single example in minibatch (1) and each of the 100 examples # in minibatch (2) are given equal influence. return loss_box_reg / max(gt_classes.numel(), 1.0) # return 0 if empty def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. The ``proposal_boxes`` field is expected. Returns: list[Instances]: same as `fast_rcnn_inference`. list[Tensor]: same as `fast_rcnn_inference`. """ boxes = self.predict_boxes(predictions, proposals) scores = self.predict_probs(predictions, proposals) image_shapes = [x.image_size for x in proposals] return fast_rcnn_inference( boxes, scores, image_shapes, self.test_score_thresh, self.test_nms_thresh, self.test_topk_per_image, ) def predict_boxes_for_gt_classes(self, predictions, proposals): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. The fields ``proposal_boxes``, ``gt_classes`` are expected. Returns: list[Tensor]: A list of Tensors of predicted boxes for GT classes in case of class-specific box head. Element i of the list has shape (Ri, B), where Ri is the number of proposals for image i and B is the box dimension (4 or 5) """ if not len(proposals): return [] scores, proposal_deltas = predictions proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) N, B = proposal_boxes.shape predict_boxes = self.box2box_transform.apply_deltas( proposal_deltas, proposal_boxes ) # Nx(KxB) K = predict_boxes.shape[1] // B if K > 1: gt_classes = torch.cat([p.gt_classes for p in proposals], dim=0) # Some proposals are ignored or have a background class. Their gt_classes # cannot be used as index. gt_classes = gt_classes.clamp_(0, K - 1) predict_boxes = predict_boxes.view(N, K, B)[ torch.arange(N, dtype=torch.long, device=predict_boxes.device), gt_classes ] num_prop_per_image = [len(p) for p in proposals] return predict_boxes.split(num_prop_per_image) def predict_boxes( self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances] ): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. The ``proposal_boxes`` field is expected. Returns: list[Tensor]: A list of Tensors of predicted class-specific or class-agnostic boxes for each image. Element i has shape (Ri, K * B) or (Ri, B), where Ri is the number of proposals for image i and B is the box dimension (4 or 5) """ if not len(proposals): return [] _, proposal_deltas = predictions num_prop_per_image = [len(p) for p in proposals] proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) predict_boxes = self.box2box_transform.apply_deltas( proposal_deltas, proposal_boxes, ) # Nx(KxB) return predict_boxes.split(num_prop_per_image) def predict_probs( self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances] ): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. Returns: list[Tensor]: A list of Tensors of predicted class probabilities for each image. Element i has shape (Ri, K + 1), where Ri is the number of proposals for image i. """ scores, _ = predictions num_inst_per_image = [len(p) for p in proposals] if self.use_sigmoid_ce: probs = scores.sigmoid() else: probs = F.softmax(scores, dim=-1) return probs.split(num_inst_per_image, dim=0)