// Copyright (c) Facebook, Inc. and its affiliates. #include #include #include #include // TODO make it in a common file #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ i += blockDim.x * gridDim.x) // Note: this implementation originates from the Caffe2 ROIAlignRotated Op // and PyTorch ROIAlign (non-rotated) Op implementations. // The key difference between this implementation and those ones is // we don't do "legacy offset" in this version, as there aren't many previous // works, if any, using the "legacy" ROIAlignRotated Op. // This would make the interface a bit cleaner. namespace detectron2 { namespace { template __device__ T bilinear_interpolate( const T* input, const int height, const int width, T y, T x) { // deal with cases that inverse elements are out of feature map boundary if (y < -1.0 || y > height || x < -1.0 || x > width) { // empty return 0; } if (y < 0) { y = 0; } if (x < 0) { x = 0; } int y_low = (int)y; int x_low = (int)x; int y_high; int x_high; if (y_low >= height - 1) { y_high = y_low = height - 1; y = (T)y_low; } else { y_high = y_low + 1; } if (x_low >= width - 1) { x_high = x_low = width - 1; x = (T)x_low; } else { x_high = x_low + 1; } T ly = y - y_low; T lx = x - x_low; T hy = 1. - ly, hx = 1. - lx; // do bilinear interpolation T v1 = input[y_low * width + x_low]; T v2 = input[y_low * width + x_high]; T v3 = input[y_high * width + x_low]; T v4 = input[y_high * width + x_high]; T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); return val; } template __device__ void bilinear_interpolate_gradient( const int height, const int width, T y, T x, T& w1, T& w2, T& w3, T& w4, int& x_low, int& x_high, int& y_low, int& y_high) { // deal with cases that inverse elements are out of feature map boundary if (y < -1.0 || y > height || x < -1.0 || x > width) { // empty w1 = w2 = w3 = w4 = 0.; x_low = x_high = y_low = y_high = -1; return; } if (y < 0) { y = 0; } if (x < 0) { x = 0; } y_low = (int)y; x_low = (int)x; if (y_low >= height - 1) { y_high = y_low = height - 1; y = (T)y_low; } else { y_high = y_low + 1; } if (x_low >= width - 1) { x_high = x_low = width - 1; x = (T)x_low; } else { x_high = x_low + 1; } T ly = y - y_low; T lx = x - x_low; T hy = 1. - ly, hx = 1. - lx; // reference in forward // T v1 = input[y_low * width + x_low]; // T v2 = input[y_low * width + x_high]; // T v3 = input[y_high * width + x_low]; // T v4 = input[y_high * width + x_high]; // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; return; } } // namespace template __global__ void RoIAlignRotatedForward( const int nthreads, const T* input, const T spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int sampling_ratio, const T* rois, T* top_data) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const T* current_roi = rois + n * 6; int roi_batch_ind = current_roi[0]; // Do not use rounding; this implementation detail is critical // ROIAlignRotated supports align == true, i.e., continuous coordinate // by default, thus the 0.5 offset T offset = (T)0.5; T roi_center_w = current_roi[1] * spatial_scale - offset; T roi_center_h = current_roi[2] * spatial_scale - offset; T roi_width = current_roi[3] * spatial_scale; T roi_height = current_roi[4] * spatial_scale; T theta = current_roi[5] * M_PI / 180.0; T cos_theta = cos(theta); T sin_theta = sin(theta); T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); const T* offset_input = input + (roi_batch_ind * channels + c) * height * width; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 int roi_bin_grid_w = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). // Appropriate translation needs to be applied after. T roi_start_h = -roi_height / 2.0; T roi_start_w = -roi_width / 2.0; // We do average (inte gral) pooling inside a bin const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 T output_val = 0.; for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1 { const T yy = roi_start_h + ph * bin_size_h + static_cast(iy + .5f) * bin_size_h / static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 for (int ix = 0; ix < roi_bin_grid_w; ix++) { const T xx = roi_start_w + pw * bin_size_w + static_cast(ix + .5f) * bin_size_w / static_cast(roi_bin_grid_w); // Rotate by theta around the center and translate T y = yy * cos_theta - xx * sin_theta + roi_center_h; T x = yy * sin_theta + xx * cos_theta + roi_center_w; T val = bilinear_interpolate(offset_input, height, width, y, x); output_val += val; } } output_val /= count; top_data[index] = output_val; } } template __global__ void RoIAlignRotatedBackwardFeature( const int nthreads, const T* top_diff, const int num_rois, const T spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int sampling_ratio, T* bottom_diff, const T* rois) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const T* current_roi = rois + n * 6; int roi_batch_ind = current_roi[0]; // Do not use rounding; this implementation detail is critical // ROIAlignRotated supports align == true, i.e., continuous coordinate // by default, thus the 0.5 offset T offset = (T)0.5; T roi_center_w = current_roi[1] * spatial_scale - offset; T roi_center_h = current_roi[2] * spatial_scale - offset; T roi_width = current_roi[3] * spatial_scale; T roi_height = current_roi[4] * spatial_scale; T theta = current_roi[5] * M_PI / 180.0; T cos_theta = cos(theta); T sin_theta = sin(theta); T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); T* offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height * width; int top_offset = (n * channels + c) * pooled_height * pooled_width; const T* offset_top_diff = top_diff + top_offset; const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw]; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2 int roi_bin_grid_w = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). // Appropriate translation needs to be applied after. T roi_start_h = -roi_height / 2.0; T roi_start_w = -roi_width / 2.0; // We do average (integral) pooling inside a bin const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1 { const T yy = roi_start_h + ph * bin_size_h + static_cast(iy + .5f) * bin_size_h / static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 for (int ix = 0; ix < roi_bin_grid_w; ix++) { const T xx = roi_start_w + pw * bin_size_w + static_cast(ix + .5f) * bin_size_w / static_cast(roi_bin_grid_w); // Rotate by theta around the center and translate T y = yy * cos_theta - xx * sin_theta + roi_center_h; T x = yy * sin_theta + xx * cos_theta + roi_center_w; T w1, w2, w3, w4; int x_low, x_high, y_low, y_high; bilinear_interpolate_gradient( height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high); T g1 = top_diff_this_bin * w1 / count; T g2 = top_diff_this_bin * w2 / count; T g3 = top_diff_this_bin * w3 / count; T g4 = top_diff_this_bin * w4 / count; if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { atomicAdd( offset_bottom_diff + y_low * width + x_low, static_cast(g1)); atomicAdd( offset_bottom_diff + y_low * width + x_high, static_cast(g2)); atomicAdd( offset_bottom_diff + y_high * width + x_low, static_cast(g3)); atomicAdd( offset_bottom_diff + y_high * width + x_high, static_cast(g4)); } // if } // ix } // iy } // CUDA_1D_KERNEL_LOOP } // RoIAlignRotatedBackward at::Tensor ROIAlignRotated_forward_cuda( const at::Tensor& input, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int pooled_width, const int sampling_ratio) { AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor"); AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; at::CheckedFrom c = "ROIAlignRotated_forward_cuda"; at::checkAllSameGPU(c, {input_t, rois_t}); at::checkAllSameType(c, {input_t, rois_t}); at::cuda::CUDAGuard device_guard(input.device()); auto num_rois = rois.size(0); auto channels = input.size(1); auto height = input.size(2); auto width = input.size(3); auto output = at::empty( {num_rois, channels, pooled_height, pooled_width}, input.options()); auto output_size = num_rois * pooled_height * pooled_width * channels; cudaStream_t stream = at::cuda::getCurrentCUDAStream(); dim3 grid(std::min( at::cuda::ATenCeilDiv( static_cast(output_size), static_cast(512)), static_cast(4096))); dim3 block(512); if (output.numel() == 0) { AT_CUDA_CHECK(cudaGetLastError()); return output; } auto input_ = input.contiguous(), rois_ = rois.contiguous(); AT_DISPATCH_FLOATING_TYPES( input.scalar_type(), "ROIAlignRotated_forward", [&] { RoIAlignRotatedForward<<>>( output_size, input_.data_ptr(), spatial_scale, channels, height, width, pooled_height, pooled_width, sampling_ratio, rois_.data_ptr(), output.data_ptr()); }); cudaDeviceSynchronize(); AT_CUDA_CHECK(cudaGetLastError()); return output; } // TODO remove the dependency on input and use instead its sizes -> save memory at::Tensor ROIAlignRotated_backward_cuda( const at::Tensor& grad, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int pooled_width, const int batch_size, const int channels, const int height, const int width, const int sampling_ratio) { AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor"); AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}; at::CheckedFrom c = "ROIAlign_backward_cuda"; at::checkAllSameGPU(c, {grad_t, rois_t}); at::checkAllSameType(c, {grad_t, rois_t}); at::cuda::CUDAGuard device_guard(grad.device()); auto num_rois = rois.size(0); auto grad_input = at::zeros({batch_size, channels, height, width}, grad.options()); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); dim3 grid(std::min( at::cuda::ATenCeilDiv( static_cast(grad.numel()), static_cast(512)), static_cast(4096))); dim3 block(512); // handle possibly empty gradients if (grad.numel() == 0) { AT_CUDA_CHECK(cudaGetLastError()); return grad_input; } auto grad_ = grad.contiguous(), rois_ = rois.contiguous(); AT_DISPATCH_FLOATING_TYPES( grad.scalar_type(), "ROIAlignRotated_backward", [&] { RoIAlignRotatedBackwardFeature<<>>( grad.numel(), grad_.data_ptr(), num_rois, spatial_scale, channels, height, width, pooled_height, pooled_width, sampling_ratio, grad_input.data_ptr(), rois_.data_ptr()); }); AT_CUDA_CHECK(cudaGetLastError()); return grad_input; } } // namespace detectron2