import torch from transformers import ( LlamaForCausalLM, LlamaTokenizer, StoppingCriteria, ) import gradio as gr import argparse import os from queue import Queue from threading import Thread import traceback import gc import torch from auto_gptq import AutoGPTQForCausalLM from langchain import HuggingFacePipeline, PromptTemplate from langchain.chains import RetrievalQA from langchain.document_loaders import PyPDFDirectoryLoader, DirectoryLoader from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from pdf2image import convert_from_path from transformers import AutoTokenizer, TextStreamer, pipeline DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" # Parse command-line arguments parser = argparse.ArgumentParser() parser.add_argument( '--base_model', default=None, type=str, help='Base model path') parser.add_argument('--lora_model', default=None, type=str, help="If None, perform inference on the base model") parser.add_argument( '--tokenizer_path', default=None, type=str, help='If None, lora model path or base model path will be used') parser.add_argument( '--gpus', default="0", type=str, help='If None, cuda:0 will be used. Inference using multi-cards: --gpus=0,1,... ') parser.add_argument('--share', default=True, help='Share gradio domain name') parser.add_argument('--port', default=19324, type=int, help='Port of gradio demo') parser.add_argument( '--max_memory', default=256, type=int, help='Maximum input prompt length, if exceeded model will receive prompt[-max_memory:]') parser.add_argument( '--load_in_8bit', action='store_true', help='Use 8 bit quantified model') parser.add_argument( '--only_cpu', action='store_true', help='Only use CPU for inference') parser.add_argument( '--alpha', type=str, default="1.0", help="The scaling factor of NTK method, can be a float or 'auto'. ") args = parser.parse_args() if args.only_cpu is True: args.gpus = "" #from patches import apply_attention_patch, apply_ntk_scaling_patch #apply_attention_patch(use_memory_efficient_attention=True) #apply_ntk_scaling_patch(args.alpha) # Set CUDA devices if available os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus # Peft library can only import after setting CUDA devices from peft import PeftModel # Set up the required components: model and tokenizer def setup(): global tokenizer, model, device, share, port, max_memory, vector_store max_memory = args.max_memory port = args.port share = args.share load_in_8bit = args.load_in_8bit load_type = torch.float16 if torch.cuda.is_available(): device = torch.device(0) else: device = torch.device('cpu') """ if args.tokenizer_path is None: args.tokenizer_path = args.lora_model if args.lora_model is None: args.tokenizer_path = args.base_model """ #先读取embedding模型 embeddings = HuggingFaceInstructEmbeddings( model_name="BAAI/bge-large-en-v1.5", model_kwargs={"device": DEVICE} ) #如果之前没有本地的faiss仓库,就把doc读取到向量库后,再把向量库保存到本地 if os.path.exists("/home/ywang/db")==False: #=======加载知识库======= loader = DirectoryLoader("kb") docs = loader.load() # splitting pdf into chunks with size of 1024 text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) texts = text_splitter.split_documents(docs) vector_store = Chroma.from_documents(texts, embeddings, persist_directory="db") #如果本地已经有faiss仓库了,说明之前已经保存过了,就直接读取 else: vector_store=Chroma(persist_directory="db", embedding_function=embeddings) model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ" model_basename = "model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) base_model = AutoGPTQForCausalLM.from_quantized( model_name_or_path, revision="gptq-4bit-128g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, inject_fused_attention=False, device=DEVICE, quantize_config=None, ) model_vocab_size = base_model.get_input_embeddings().weight.size(0) tokenzier_vocab_size = len(tokenizer) print(f"Vocab of the base model: {model_vocab_size}") print(f"Vocab of the tokenizer: {tokenzier_vocab_size}") if model_vocab_size != tokenzier_vocab_size: assert tokenzier_vocab_size > model_vocab_size print("Resize model embeddings to fit tokenizer") base_model.resize_token_embeddings(tokenzier_vocab_size) if args.lora_model is not None: print("loading peft model") model = PeftModel.from_pretrained( base_model, args.lora_model, torch_dtype=load_type, device_map='auto', ) else: model = base_model if device == torch.device('cpu'): model.float() model.eval() DEFAULT_SYSTEM_PROMPT = """ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. """.strip() def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: return f""" [INST] <> {system_prompt} <> {prompt} [/INST] """.strip() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) text_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2048, temperature=0, top_p=0.95, repetition_penalty=1.15, streamer=streamer, ) llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0}) SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer." template = generate_prompt( """ {context} Question: {question} """, system_prompt=SYSTEM_PROMPT, ) prompt = PromptTemplate(template=template, input_variables=["context", "question"]) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever(search_kwargs={"k": 2}), return_source_documents=True, chain_type_kwargs={"prompt": prompt}, ) # Reset the user input def reset_user_input(): return gr.update(value='') # Reset the state def reset_state(): return [] # Generate the prompt for the input of LM model """ def generate_prompt(instruction,my_input): return f"Instruction:{my_input}\n Response:{instruction}" """ # User interaction function for chat def user(user_message, history): return gr.update(value="", interactive=False), history + \ [[user_message, None]] class Stream(StoppingCriteria): def __init__(self, callback_func=None): self.callback_func = callback_func def __call__(self, input_ids, scores) -> bool: if self.callback_func is not None: self.callback_func(input_ids[0]) return False class Iteratorize: """ Transforms a function that takes a callback into a lazy iterator (generator). Adapted from: https://stackoverflow.com/a/9969000 """ def __init__(self, func, kwargs=None, callback=None): self.mfunc = func self.c_callback = callback self.q = Queue() self.sentinel = object() self.kwargs = kwargs or {} self.stop_now = False def _callback(val): if self.stop_now: raise ValueError self.q.put(val) def gentask(): try: ret = self.mfunc(callback=_callback, **self.kwargs) except ValueError: pass except Exception: traceback.print_exc() clear_torch_cache() self.q.put(self.sentinel) if self.c_callback: self.c_callback(ret) self.thread = Thread(target=gentask) self.thread.start() def __iter__(self): return self def __next__(self): obj = self.q.get(True, None) if obj is self.sentinel: raise StopIteration else: return obj def __del__(self): clear_torch_cache() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.stop_now = True clear_torch_cache() def clear_torch_cache(): gc.collect() if torch.cuda.device_count() > 0: torch.cuda.empty_cache() # Perform prediction based on the user input and history @torch.no_grad() def predict( history, max_new_tokens=128, top_p=0.75, temperature=0.1, top_k=40, do_sample=True, repetition_penalty=1.0 ): history[-1][1] = "" history[-1][1] = qa_chain(history[-1][0])['result'] """ #history的格式:[[query1,response1],[query2,response2],[query3,response3]……] docs=vector_store.similarity_search(history[-1][0]) context=[doc.page_content for doc in docs] #使用下面的方式,把多轮对话转为单轮对话 input = f"### Instruction:{history[-1][0]} ### Response:{history[-1][1]}" prompt = generate_prompt(input,"".join(context)) inputs = tokenizer(qa_chain, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generate_params = { 'input_ids': input_ids, 'max_new_tokens': max_new_tokens, 'top_p': top_p, 'temperature': temperature, 'top_k': top_k, 'do_sample': do_sample, 'repetition_penalty': repetition_penalty, } def generate_with_callback(callback=None, **kwargs): if 'stopping_criteria' in kwargs: kwargs['stopping_criteria'].append(Stream(callback_func=callback)) else: kwargs['stopping_criteria'] = [Stream(callback_func=callback)] clear_torch_cache() with torch.no_grad(): model.generate(**kwargs) def generate_with_streaming(**kwargs): return Iteratorize(generate_with_callback, kwargs, callback=None) with generate_with_streaming(**generate_params) as generator: for output in generator: next_token_ids = output[len(input_ids[0]):] if next_token_ids[0] == tokenizer.eos_token_id: break new_tokens = tokenizer.decode( next_token_ids, skip_special_tokens=True) if isinstance(tokenizer, LlamaTokenizer) and len(next_token_ids) > 0: if tokenizer.convert_ids_to_tokens(int(next_token_ids[0])).startswith('▁'): new_tokens = ' ' + new_tokens history[-1][1] = new_tokens yield history if len(next_token_ids) >= max_new_tokens: break """ yield history # Call the setup function to initialize the components setup() # Create the Gradio interface with gr.Blocks() as demo: github_banner_path = 'https://radformation.com/images/radformation-logo-white.svg' #gr.HTML(f'

') gr.Markdown("> Radformation Q&A bot") chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): user_input = gr.Textbox( show_label=False, placeholder="Shift + Enter, to send message...", lines=10).style( container=False) with gr.Column(min_width=32, scale=1): submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): emptyBtn = gr.Button("Clear History") max_new_token = gr.Slider( 0, 4096, value=512, step=1.0, label="Maximum New Token Length", interactive=True) top_p = gr.Slider(0, 1, value=0.9, step=0.01, label="Top P", interactive=True) temperature = gr.Slider( 0, 1, value=0.5, step=0.01, label="Temperature", interactive=True) top_k = gr.Slider(1, 40, value=40, step=1, label="Top K", interactive=True) do_sample = gr.Checkbox( value=True, label="Do Sample", info="use random sample strategy", interactive=True) repetition_penalty = gr.Slider( 1.0, 3.0, value=1.1, step=0.1, label="Repetition Penalty", interactive=True) params = [user_input, chatbot] predict_params = [ chatbot, max_new_token, top_p, temperature, top_k, do_sample, repetition_penalty] submitBtn.click( user, params, params, queue=False).then( predict, predict_params, chatbot).then( lambda: gr.update( interactive=True), None, [user_input], queue=False) user_input.submit( user, params, params, queue=False).then( predict, predict_params, chatbot).then( lambda: gr.update( interactive=True), None, [user_input], queue=False) submitBtn.click(reset_user_input, [], [user_input]) emptyBtn.click(reset_state, outputs=[chatbot], show_progress=True) # Launch the Gradio interface demo.queue().launch() """ demo.queue().launch( share=share, inbrowser=True, server_name='0.0.0.0', server_port=port) """ """ demo.queue().launch( root_path="/etc/nginx/sites-available/radllama2_gradio_app" ) """