import gradio as gr import sys import torch from omegaconf import OmegaConf from PIL import Image from diffusers import StableDiffusionInpaintPipeline from model.clip_away import CLIPAway import cv2 import numpy as np import argparse # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="config/inference_config.yaml", help="Path to the config file") parser.add_argument("--share", action="store_true", help="Share the interface if provided") args = parser.parse_args() # Load configuration and models config = OmegaConf.load(args.config) sd_pipeline = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float32 ) clipaway = CLIPAway( sd_pipe=sd_pipeline, image_encoder_path=config.image_encoder_path, ip_ckpt=config.ip_adapter_ckpt_path, alpha_clip_path=config.alpha_clip_ckpt_pth, config=config, alpha_clip_id=config.alpha_clip_id, device=config.device, num_tokens=4 ) def dilate_mask(mask, kernel_size=5, iterations=5): mask = mask.convert("L") kernel = np.ones((kernel_size, kernel_size), np.uint8) mask = cv2.dilate(np.array(mask), kernel, iterations=iterations) return Image.fromarray(mask) def combine_masks(uploaded_mask, sketched_mask): if uploaded_mask is not None: return uploaded_mask elif sketched_mask is not None: return sketched_mask else: raise ValueError("Please provide a mask") def remove_obj(image, uploaded_mask, seed): image_pil, sketched_mask = image["image"], image["mask"] mask = dilate_mask(combine_masks(uploaded_mask, sketched_mask)) seed = int(seed) latents = torch.randn((1, 4, 64, 64), generator=torch.Generator().manual_seed(seed)).to("cuda") final_image = clipaway.generate( prompt=[""], scale=1, seed=seed, pil_image=[image_pil], alpha=[mask], strength=1, latents=latents )[0] return final_image # Define example data examples = [ ["assets/gradio_examples/images/1.jpg", "assets/gradio_examples/masks/1.png", 42], ["assets/gradio_examples/images/2.jpg", "assets/gradio_examples/masks/2.png", 42], ["assets/gradio_examples/images/3.jpg", "assets/gradio_examples/masks/3.png", 464], ["assets/gradio_examples/images/4.jpg", "assets/gradio_examples/masks/4.png", 2024], ] # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("

CLIPAway: Harmonizing Focused Embeddings for Removing Objects via Diffusion Models

") gr.Markdown("""
Paper | Project Website | GitHub
""") gr.Markdown(""" This application allows you to remove objects from images using the CLIPAway method with diffusion models. To use this tool: 1. Upload an image. 2. Either Sketch a mask over the object you want to remove or upload a pre-defined mask if you have one. 4. Set the seed for reproducibility (default is 42). 5. Click 'Remove Object' to process the image. 6. The result will be displayed on the right side. Note: The mask should be a binary image where the object to be removed is white and the background is black. """) with gr.Row(): with gr.Column(): image_input = gr.Image(label="Upload Image and Sketch Mask", type="pil", tool="sketch") uploaded_mask = gr.Image(label="Upload Mask (Optional)", type="pil", optional=True) seed_input = gr.Number(value=42, label="Seed") process_button = gr.Button("Remove Object") with gr.Column(): result_image = gr.Image(label="Result") process_button.click( fn=remove_obj, inputs=[image_input, uploaded_mask, seed_input], outputs=result_image ) gr.Examples( examples=examples, inputs=[image_input, uploaded_mask, seed_input], outputs=result_image ) # Launch the interface with caching if args.share: demo.launch(share=True) else: demo.launch()