import time import psutil import streamlit as st import torch from langdetect import detect from default_texts import default_texts from generator import GeneratorFactory device = torch.cuda.device_count() - 1 TRANSLATION_EN_TO_NL = "translation_en_to_nl" TRANSLATION_NL_TO_EN = "translation_nl_to_en" GENERATOR_LIST = [ { "model_name": "yhavinga/t5-small-24L-ccmatrix-multi", "desc": "T5 small nl24 ccmatrix en->nl", "task": TRANSLATION_EN_TO_NL, "split_sentences": True, }, { "model_name": "yhavinga/t5-small-24L-ccmatrix-multi", "desc": "T5 small nl24 ccmatrix nl-en", "task": TRANSLATION_NL_TO_EN, "split_sentences": True, }, { "model_name": "Helsinki-NLP/opus-mt-en-nl", "desc": "Opus MT en->nl", "task": TRANSLATION_EN_TO_NL, "split_sentences": True, }, { "model_name": "Helsinki-NLP/opus-mt-nl-en", "desc": "Opus MT nl->en", "task": TRANSLATION_NL_TO_EN, "split_sentences": True, }, # { # "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512l-nedd-256ccmatrix-nl-en", # "desc": "longT5 large nl8 256cc/512beta/512l nl->en", # "task": TRANSLATION_NL_TO_EN, # "split_sentences": False, # }, { "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512-nedd-nl-en", "desc": "longT5 large nl8 512beta/512l nl->en", "task": TRANSLATION_NL_TO_EN, "split_sentences": False, }, { "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512l-nedd-256ccmatrix-en-nl", "desc": "longT5 large nl8 256cc/512beta/512l en->nl", "task": TRANSLATION_EN_TO_NL, "split_sentences": False, }, # { # "model_name": "yhavinga/longt5-local-eff-base-nl36-voc8k-256l-472beta-256l-472beta-en-nl", # "desc": "longT5 large nl8 256l/472beta/256l/472beta en->nl", # "task": TRANSLATION_EN_TO_NL, # "split_sentences": False, # }, # { # "model_name": "yhavinga/byt5-small-ccmatrix-en-nl", # "desc": "ByT5 small ccmatrix en->nl", # "task": TRANSLATION_EN_TO_NL, # "split_sentences": True, # }, # { # "model_name": "yhavinga/t5-eff-large-8l-nedd-en-nl", # "desc": "T5 eff large nl8 en->nl", # "task": TRANSLATION_EN_TO_NL, # "split_sentences": True, # }, # { # "model_name": "yhavinga/t5-base-36L-ccmatrix-multi", # "desc": "T5 base nl36 ccmatrix en->nl", # "task": TRANSLATION_EN_TO_NL, # "split_sentences": True, # }, # { # "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512-nedd-en-nl", # "desc": "longT5 large nl8 512beta/512l en->nl", # "task": TRANSLATION_EN_TO_NL, # "split_sentences": False, # }, # { # "model_name": "yhavinga/t5-base-36L-nedd-x-en-nl-300", # "desc": "T5 base 36L nedd en->nl 300", # "task": TRANSLATION_EN_TO_NL, # "split_sentences": True, # }, # { # "model_name": "yhavinga/long-t5-local-small-ccmatrix-en-nl", # "desc": "longT5 small ccmatrix en->nl", # "task": TRANSLATION_EN_TO_NL, # "split_sentences": True, # }, ] def main(): st.set_page_config( # Alternate names: setup_page, page, layout page_title="Rosetta en/nl", # String or None. Strings get appended with "• Streamlit". layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" page_icon="📑", # String, anything supported by st.image, or None. ) if "generators" not in st.session_state: st.session_state["generators"] = GeneratorFactory(GENERATOR_LIST) generators = st.session_state["generators"] with open("style.css") as f: st.markdown(f"", unsafe_allow_html=True) st.sidebar.image("rosetta.png", width=200) st.sidebar.markdown( """# Rosetta Vertaal van en naar Engels""" ) default_text = st.sidebar.radio( "Change default text", tuple(default_texts.keys()), index=0, ) if default_text or "prompt_box" not in st.session_state: st.session_state["prompt_box"] = default_texts[default_text]["text"] # create a left and right column left, right = st.columns(2) text_area = left.text_area("Enter text", st.session_state.prompt_box, height=500) st.session_state["text"] = text_area # Sidebar parameters st.sidebar.title("Parameters:") num_beams = st.sidebar.number_input("Num beams", min_value=1, max_value=10, value=1) num_beam_groups = st.sidebar.number_input( "Num beam groups", min_value=1, max_value=10, value=1 ) length_penalty = st.sidebar.number_input( "Length penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.1 ) st.sidebar.markdown( """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate) and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate). """ ) params = { "num_beams": num_beams, "num_beam_groups": num_beam_groups, "length_penalty": length_penalty, "early_stopping": True, } if left.button("Run"): memory = psutil.virtual_memory() language = detect(st.session_state.text) if language == "en": task = TRANSLATION_EN_TO_NL elif language == "nl": task = TRANSLATION_NL_TO_EN else: left.error(f"Language {language} not supported") return # Num beam groups should be a divisor of num beams if num_beams % num_beam_groups != 0: left.error("Num beams should be a multiple of num beam groups") return for generator in generators.filter(task=task): right.markdown(f"🧮 **Model `{generator}`**") time_start = time.time() result, params_used = generator.generate( text=st.session_state.text, **params ) time_end = time.time() time_diff = time_end - time_start right.write(result.replace("\n", " \n")) text_line = ", ".join([f"{k}={v}" for k, v in params_used.items()]) right.markdown(f" 🕙 *generated in {time_diff:.2f}s, `{text_line}`*") st.write( f""" --- *Memory: {memory.total / 10**9:.2f}GB, used: {memory.percent}%, available: {memory.available / 10**9:.2f}GB* """ ) if __name__ == "__main__": main()