diff --git a/.ipynb_checkpoints/app-checkpoint.ipynb b/.ipynb_checkpoints/app-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..7411b23922a94f8276eecc917a047280018ef102 --- /dev/null +++ b/.ipynb_checkpoints/app-checkpoint.ipynb @@ -0,0 +1,134 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#|default_exp app" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#|export\n", + "from fastai.vision.all import *\n", + "import gradio as gr" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching for 'donut photos'\n" + ] + }, + { + "data": { + "text/plain": [ + "'http://images.unsplash.com/photo-1551024601-bec78aea704b?ixlib=rb-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=1080&fit=max'" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from duckduckgo_search import ddg_images\n", + "#from fastcore.all import *\n", + "def search_images(term, max_images=30):\n", + " print(f\"Searching for '{term}'\")\n", + " return L(ddg_images(term, max_results=max_images)).itemgot('image')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Path('donut.jpg')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from fastdownload import download_url\n", + "dest = 'donut.jpg'\n", + "urls = search_images('donut photos', max_images=1)\n", + "download_url(urls[0], dest, show_progress=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJoAAADACAIAAABziO3RAAABHGlDQ1BJQ0MgUHJvZmlsZQAAeJxjYGDiyUnOLWYSYGDIzSspCnJ3UoiIjFJgv8PAyCDJwMygyWCZmFxc4BgQ4MOAE3y7BlQNBJd1QWbhVocVcKWkFicD6T9AHJdcUFTCwMAYA2Rzl5cUgNgZQLZIUjaYXQNiFwEdCGRPALHTIewlYDUQ9g6wmpAgZyD7DJDtkI7ETkJiQ+0FAeZkIxJdTQQoSa0oAdGeEQwMoDCFiCLCCiHGLAbExgwMTEsQYvmLGBgsvgLFJyDEkmYyMGxvZWCQuIUQU1nAwMDfwsCw7XxyaVEZ1GopID7NeJI5mXUSRzb3NwF70UBpE8WPmhOMJKwnubEGlse+zS6oYu3cOKtmTeb+2suHXxr8/w8A7pNTlvGwJJAAAODXSURBVHicfH13fBzXcf+8srvX79B7B8HeO0WKEtW7ZEu2XOQetxQ7PXESJ3GcON1xiR3/3G3ZsiVZvVFUo0iKvRMkARC9H4DrZcsrvz/e7uFIOcFHpnG4u73bN29mvvOd8tCF33wFIQRIIkBSAgAghKSUUkoAkFIihCQAkhKEBACBoPSDEYCUACAAIYTcN4N3EZAgQUoBQkohpBRSghRCCsG5IwUXTDDOBGNCcMaYlFIILoT3wSBBIClBSimEAAD1L4DACCGEEMEIAGH3EcYYY4wQIoRiTNzHGCOCEcYYU4IJYIQQYIIRIupNCCFAABgjhKREgBAgdwVKt1l6KBFCZX9XX7O0UBhJjEFKwTlXfxHSfT+TEgRCgIj3bSUgQBikRBLUXwBAgEQYq09ECGEJ6uKLX0BKAQBSIoRA/Y5AvUytO3WXDtTaAyBQ30JKCQgQILj6BgABSEAICSGkeiQlICQlIARSCFfAUirJCSlACM6ZJ0guOWdCSME4VxLkQgghxOI35hKQBACQCACV7gd7t0oIQbgkL4IxQgQjVPobQZQghDEmmGCMMcIEY4wwBoQwwqA2qFpEhEDdNgC4W9EVEip7CGW/oaulWHqGS7Xb5OLOk+5tgFS7H5U2PHJfqD7dExtGrv64F79qx4B7RfUUR4BAApJIuq+UgDxxIldQ5Rdf/CKlDwMABOrVEiGQrhZJKZgUQkophUBqf0ohheSCS8EkF0KJVv0fl0J9RfUOEFIoxS9tGCS8PestOniLjxDGhJBFUWKEsZIuQRgTTBDGSP2LEMIYIey+mShNBAmAJbhWB8DbO568pLvu8pp9rJZDSIlK6wcgpbfhJSh1RAKBJGq7IwBAnEsJkgBB3obxNor0Vl2CeqlSCSkRSPB2tPcl1d+RBOF+mFzcKt7qSVq2Edxvr+5d3VjpL4vfXklCuvaTcy6llIILLlx1FFwIrrTN/RFCAkghBOdqKwkJUkoskZRSImU63HtFgAADAkB40YQqK4oxEIIRpkqiCAEmVMlTWVmln4BdOyoBIYRhcQWRBAClQ+4Neg88IwMgEcLuHSJUUkT3FUKWaw+UVrqkB0JK104KjJCQIKVAEmHPJ2CEXbUBKG0nKQHQ4qepX0C6llHZTHfNy1R28RsvKp2kkgtwd225z0Du7yWTIiRIwQWXgkshpOCcL9pJIYVkXPlGKT3lK1mKkmkSUoIEpLaplAgQRljJDRAAdnerWnuMCXEVEFOCESZEPaIIY4QxAoQwVm5PfWVw3ZJ7EXfbS89mgiw5jqtNpcIN0t2tQpYcv1jc5ejqt7jagQRIkCWr7GqqlNwTCgJEMALk2XkACRIj7Jlt9Xp3e6HFPyn9U2Jw95EnC/XZAgApKOI+lFJKSdUlSm5Q7UHwcAtIkK7QuBRccC5LIhRCcO76yDJf8u7bXtwlCNTCKVkARhi5eqdcXcm6YoKUw8OEEIRB2VFMkHKRCAMG6W4CVPoUd9eXFqNkIq+GNuUSLRdt6RfvSouvlIsfUbbsSKGSa66MXPGA9/0QVo5KrYO3dRa3xNUa7u4v5RE8H6wsnLfOwsMlQgjBQUghpUKUVAkXAVICdO2nAiucSSFBcu4KlIMSnZBlllR6TmPx5kvyu8r/lVCAB0QBoZIXJIQihDHBgDFGWEFAwBgp7QUMCCG1CaBMbCUX8ltdnfu6d6G5q6VYkiXyXvm/XalM3kjpPSpHUgCu3y37gsi1oot7Ti7aWM9iu5tA+WXPxgohlM5K6fopwYUQnCu/xoXggnEhmOCCMy4444xRKTh4nlZwwbnDmcMshzHGuSOFQGXbE6QEyUGCdM1FyRx5lkHJCaD8l5IIQUUGCpsSV/kwVr8rCKPMpqu0apMCUnZYSqRCIm8RvFUv8xHXbiZ59WtQGca5xooAgBCiDM0CgLzqyp7QVEzheSckJS69q3R55EF9Zfel61IV3pEIgZASQCqbrkIzdQn1u+fapOBccCaE5JxJxjjnjDHOOBdMcM6ZYLbDOWNKXJxTwbmKYQTngnPuMMexLZtxx2HMQVK4VmPxR0U7ZV8WgVQG0g0WlBfDLprBi5BGWUyFPDEpgc9FFOpBPHc5ALm4HNyoCUpGSm0ODyB4YKH82atF9W4R/la1luqDPEW9SuM9NFoyueWGp7SNlAcH8DAqQiVdQMp3KgRWun7JNQpZig445+pfzphwpehwxpntKNk5jDu2IzhnjDucCy45F1wIKgWXIEEIqd7kOIwxwR3GHcexgfOSRJCnZBIAYfW9secFMcKuoJQ4VbRHMAbXhNKSTAFhibAKBpTJdTc2Ru5iqrtU4YkXCyg87gJBFysoNwVeXAflSlmmZ6WFXoQz71bfRSUGqWBl+SZ2XaQrKs9kLJql0k1I+Vs2k/vRSmzqBoUUCsm4EERw91/GBeeccca5ZI4rEYc7DrNt22GcM84YZ1w6jDPBpYCS7wMAKgUD8MIIwYRgXDD1SIX8BCEECCs3hgBjBG6s7kJPhBEiBONSzOA6RU85sUQACIPH4Eh5dUCNrgKNEhYXsTyMv9pyvovh8MiNkhd8t8w8Uqmk/bJclmVICnlig/JPLCM0oGQmvEilLI78LVYBCSFAApJCCAGlGJwrt8eUFrpm1GGCMeZwh3HOHMdxHKZUVDiMMS4Yl1JIIQSXIIRU/BYoc4iAghTefhVQAsRCoFKgjYAo90YUZUaAYEooVv6PUIQJphjAdX4IIanEr25U7WeES+uGcUl7Fm9cyRMjJKVwbYCExStc4x0ByXetnXoxBhdVgKfo4EIPwErzXDO6KIFyLbxaIwFc4rMEZ6T3X/nPu2Cz5yA8cCmky56o6I4JrrSQMeX1HMZs5jDGHeY4DufCYVxwwZSUBQghuXADe3V5dUsYE0KAYEwwIpgQDFQI7uFFF4AjkAgkRkAREoRSApquUUoxRoRSQiihBBOCPGoUMMEYw6LArtqrns4tYoHSqnmQQV71HndpFrlfeFf8824QWw5gFok1WeLSSqj1XW/09soi9eZZS8/5YblIisprPrrM8iv/LRTNyYUCnwrLcMEZ51wwxpkCm4zZjDFmO47NGOeCOYwz4XDBucuKCiGFVByQCnIwxpLgUlQOGGOKMSGIKoFQTAihwAVgF3MqpCkFBoqllBhrgAAjpFGqG4b3DgJEWVSXxQbX/3mBwyLVsSgPVLZ8UKYEizZNuqH0tYv1fzwsu6z7fgU6pbxKagg8uAEltkSALFfEsiuVX9FVMvcCXrBYuqQb3bqhG1ehgfJSgjPBuGdFOXMcF5U6nDkO59xhXAmaScmZF9hLuNohIIwpVTYPECAgmKhoDRNMMaYEaxolBFNKqUYwIbR0Iyr0IwgRjDkhFHPuhcIEY6RRTCgmFGMiMSpFlBJJBAIkvsphvHv1UYntuUqWiyZU3QdCCCEVMJRjmfKrua4RuVaPSACEvDxPKbJZ/HCxyB8q3VXO4Br5qdQNv+ZbgfdH9cFKplIKpYVSSsGUABlIFfwJzhzGHMG543DHcd2gwwTjnHEOiokRUMa/ICmFCg8AwI3XMMYIEYIopZQS6mIUwJgg5faIq3uUEKWbBCOMCUVlP4QQgRBFmCDMsWAuYkISIZXJUXtROS7kcY7eRl70cNdggRIqvlYD3iX1EpC5djeUrTIqBZ4KsHh0YdlOujpelKDCPFQyHx6GKvsgF6+qb+/elHA9pZu2Ux5McBfFKD1kjDHGmRsFqoDCdhyFb5QLdC2okJwLBJgLN79QInEJ0pCiTxCiRDk0TCnVKNE0jWhE/XgxgxcE4hL0xMglYxBVwT54bBlCGJAEgkFKteeFBAQghERcKAgl3fhBYpc6h3JjVfJy6neMsZQSJEdCSuSGJddAm2uEd40pLj3rvcv9UJWc9CQsXYFgAIk8zhTU5vfE5N6nVLypGwOpa3IkAEC6NIySnlDKx6QQnDEuhGBMcMbcaMH7UYhTWU7OGJcqJhCKe1Ma4HHois0kGBOKKSEq36MRigmmlBJCKCWapmkapZpGCKGUYkowwaVcgncTrg9z9wW4ho2WAilvc0uEQHj+R4JEZRjH04prHngv9pwWkiAUOihZPQECCYQBAJfM6TXqeNWnuPtA6Z+CoyV+1pWkKHt92ftL1rYEoH7LRsGgrLAAld+VIISQkgsuJBecO0IKwThzVJTHOOeO43DHk6DDOec2U9GcYC5+8UxwGdYuuSVFfVFKMMGaRjRKqUYoJRhjT3KEEEIoIUSjmgtTVNSH3QDP3fhCSo/KFcgzUerGqGckF6NvpASIkESAAUvvWU9Lyn2kyuIgl7JRls77KHB1x/2fCjAQdksLSgqq1Ld0fc9aqNVX0lMZM+9aaHG1QMgyJ+vtK6XByPuq5TbbI5sXlVDKUpAtvPhPBX2Cc9t2mG3bjDOHuwaUC2U2hZQOAyG4lJKLMmsOgBAibu4cUYIJwp7aEU3TqEY0jRJKNUoJpYgqX4hdrppQhDGlRAGhkh8EAOWsVRgJWEghQWWLhFQMDEhJS/tI/aIygN4Sl1YVlV/3mp3uRsol4wkA71K4a1SwhImutqL/C0rykrreZ5Xc5zUgevFOSpqpNM/d0IIjIYUbhAvuikUo58cYc2z1PxUPcs64otMYF9xNuZd/qMo8uY4beXEBAUQoUcGDphFN1yghGiVUp6QEbIimNI9gjIhSQdd3quISXFZiUrbIUgjhfrL3bVQ2HXGXMaNuvOmGTq52qhiKICmEUFUtyFVpJD0bUlpfN99bttCoVL1RZpzVd3PpOsWywjUavxj2lV+tdPGyzeFtHARudUApcBWi9BbJOXfxixDCpbAVncZUNOgwRbw4tiJCPVijSFMOUgouQK2BlKAAJwAoSlPDSIKiyRDyVJASQgg1dEIo0XSqUY1qlBCCVWyIkZd7L9cQVI60XTMJIMqpSpXYVCVXbk4ZVG5OykXGhSIFVcqiaHVJTAgIUXpWKlIVIwEAQgoskWeZpafIpYfguWe4OsAHz1NKqYz5Yi5CIc5F8PkuuFR6KAFJJNxtJYRUeYnSnhWlogghOFM5ds44Y7ZQAZ/yf4q8trntMM44Eyo1r5YLvNy1+holtcGYuLhEYRkVQBBVl0QwJoRSgl0fiIlCNlRFGW5xk7vdMfZ2tASEPKO/aF0QQgK8RYBSjLT4U2K1sKt6rhLSa6xc2UNEiGtCJSDhCsB7nfCI1xJ94G2u0pe+1jZeJZWrbIgLopCQAhDG18Qo0sOfUkiVZ4RSxtwVnpSCqSy7FF7wzhWQ4Qp5Oowxx+ZMOAqiCskc7jFnKhxxhQcuQ40JuFUPhGAV7GmuwlHXnFJKMQGClbdUgi9F+sR7G/Ls0ruNjVDAWynbYuFfmccpUwapstkqikLqH+QpkUts0aucHELgxhUu+1mqQyReWswN2KVEQiKMQGJVseQVBlyFfK/xoODy4K5LQB6Z4xY+qTvlQkEfWeJlAATn6klQFlDl/xQHw1z7yRnnKovEFoM/5gIYyfliARoA4gLU8gmvGtOTnAogkNIxTSMYe8wmJVSjlFJN07CCL4QoOg1KNtOLIErb2pWldKv0Sj/IQ2XIq5ssVb6UbJQqRoEyA6ZE6a5wCc96Pk2CpMoGK9mBp0yKKwCv4rS0FVwKA1yLIKVUXhgEBsAIOAAC8JDq1dinVHq5aDZdC6y+lmdGAKTg0q0PdQO3UlGLdE2oFx+o/1eCc5hjOyq5q1gYwYELJT4XEiKES1k1jAkg0NyCQEQIoRRrVKM61TRCVRivCOoSAYMJoVThUDd35PkpDwnKq2/KlQOgclkKr+JYLFKHixgCSY+A9JhLD26VwIRHEZSCe+kJmYKHfaQrMeSZATeAQwipOiM3JvU+XgEEF4LJRUX2gNRvqVNFXgyvXoDdANR1DaB8oXSJFyld5FkKISTnjmdHOefCccXKmbBdclRwJoUbQrr7sITOCHFrOgEBQZgQFctjQgjVqKZRTdOI5oIXBTgJUaVlGGOiwCvBpVwhWpQRAFbViqWM7FWexTWVai08aCpcJ4MkQqACSEAq9sAlGbur6oINvChj73kPW6tdIylC5CrEoX7xXLDnmJVSy1JFNXKZPvcGwGNQPaalXIoIXBisaELFobpsiZQSSQGuDBW3wgRzc0mOwwTnzMMvnHHFuSgZK18iuJQAHvqRXJR2lVspTbxwQHMJNJfnVLQ18X4npfCiVOmiJKbMTMmuuV5FkUhedR2U5Vo9Wyo9HS0DAtL1f8Kt9FQOSgEtz6SVUyUu81Oq7PXssBcdejat9OGlOlsFScpywq4mYc9qomuLTCSAimi9YB88kttVdHc3Ko7QK3J36ye4lwJ0U/Lc488Yc5jjpnKZ+x+zGWdcMkGYQIwLKQQCgUvo2vO7CCEVfxPs5Rw0SimhmkYo0SjVNEo06lUnIQVysFeH7YWAKoGBS5ZNyQdLb/UWg0+Xb0RSVdOp2sfFmpRyQIdU04SyFhgp7OUtt7ttQN0KKOpM6QcGUASW+nThrb301l+oGxdCAAhasorqK5aBSiVD5MWHgBQfWvKCyqoLKRAgJBBCEhNQ28IzcK4p4l7+3EsfKUDJuSMElyrb4DiccS/5zhxHMFWopuJGIBwZJqeWIxgXBEDD0k9Bp4h4IlTNDZQQQjClRFsUJCUaoVRT+XYXqrqlhEqJsasKmHh45irWwrOQnnkT4KlRqQ7IXehSuAdlCBa5nM4iKenG954VUYqwCF1cIyoRRlJiKaRXAqr0XXpbAUAxywBuXk0KKgF5IseqYlh9nlTVwAhKSYqrNhpy/a/02FeEsRQCEHbNu5RSChXKqRCCcSaUyjmMq6IKxoXrC7njMIdxx2GcS4cLIcHTZ0CYCKKZnJhMMCERIogQQJgQEdCxrmFd1yjFLs9JKKWEUkyoRqiiPYnKK7ngRbVmeIHxVQbHtVrCE6IAr9LVK0nzNrlXquF5KS908BIBi4L04GSZoi6SLWUPS1H1oocSApd2CwBIoYTA3XIqt7uiLCRFkiooVU4kKGkqLfR2mhdclllmKaUQEgNwzkuvdwvhhfQyQ1y4pTBMhQ2OzRyVx2XcVVc3FygZF1wIobYXUrUqgDFI0ARQcPN/iFJsaMSv4bDOQz7sMzRd16iu7CV1K2BUsYTXb+QiF+WS8CKHVbJGi5ilVEUGLpXg+gdP2J5AkVTWyr1KSe1KgYQsPfPuGqV3C7gM4Hq0mUSCi5KwwFN3jBd7+KQnTlc6QtDysMEDMqh8+0hVwiOEQrHu1V2AJtyKJYdJrjgxL4jwnJ/jJpG443DGhOW4BBsTgrtpYLd+QILEGGMJBCNCgCIghGiUEN0niS4QlQQTSnVKdJ3oGg5o0q+Bz+cSa9jrFFMNZQDYc38YeVXBJezgruAiSi9PzyyKEy1qJ8BiIAGoXK1dRLtI34DnyEsgtOTRXPxbosYWi/yk9Jyuh3KAC+RxsyWRSyEAo6s3BCoBVkRL93n1XvHCDOmWESq/W0LhXEpVCuE4zDIt07Rts6jqX1TNC3PreIUrSC4ZFzYTQkgmgHN3HyvIoconKMEaxgQDJdTQiKFTXdc0XdMMvyA+iSlW+QdCdIopxQbmPiqVT1RRhKJlFoPrUlDvIaVyL+jaJ+TaUamsqxtiKVX0SDHPdsnF4loMAK7LgcXLAQAuqy/0ClDKn3e/mlz8GkKlC0v7DLtWAQEH/q5t5vIr3kZyw0oAhLCUgnqgCGBxF5Q+T0IpnihTXC/+lSoLaJpmNlNIZ3K5vMkc4VFt6lWg6BjOgQnJhEulKWSvIUQJUIJ1SnRN/UcNnVBCNE3z+aiua5pGsW4A9QHWJKKKSyMEESx0AI2q3lsFRTEgXNqbCLmMrnpQZs2kENK9QQCEFbTBUGom9crSpVQJV+UmESwqW3lMuaii6i9XpXIXea1F+SGEhFi08MqkK54RgSQgqBQIpOAAAnGBuRe0ILUdkVzUPrT4PyUsWvpm0t1PAhYTHerevGpAz12rIgQkVaE1tywnb9o5i2UKzLKY8Aw+CKm6BTFCArzA1Gss0gjx6UTXqGFQQ9cMjfgMTdOoW8ukAClVtCghuiGQJgFLrOoqOJZSV3GFizgkIOLpIQAIgQgOBLE/TIgGgCUiSDcQ0SRn3LaEmWWWY+ZqWC7byOaEtLJRfdjfM+FolTxTK6ygDTqZo9QUqj1GCqkCfADFay4asEVpycVw0ANQKo9f9jIof8uiPZYgpaRI6MCo5EgILiWRGCQpCiIwUV4YYbW/pAdmlHy82mvO6SIuKPsgIUroTq2NeiCQCkKv4j5AAgAmgAgQyoG7WEBKAQJUUybCOkbUBZlI5SJ0Sg2dGp4INUo0jeoUE0owcfum3bcQDBgRJEGF30iC5AQERgRh5HU4I9cDKxPrDwYbe0I17UQPFYtICMsfMIhuUESFFFxyxu3CPBvdC9OTVzo2VJCAzTNDhom/N1ERL4beF6neOS9t+vbq7jw2QFLKacjgJgibYwJoccVKFhMWF0QsPqcUr3xlr1lpT7MBEEaSAteAE8mFFEhIDEJHkmFhe/QcdoNPhVuUIKVwC104Z4xetblAmRzpQVqXt/E8imLnhcBu15eq5iSapmtM03VDF4KBYIwSDCAJQgBAMKIYU0o0XcNURX5egZpGdEWtESU5N6wnpYoml5QBQAhTgQFzKRBCISHq4qPTNtgt7YJSIWWM2tU0m7QCGX8j9ke1UJ1ES+dHK8wMnh+35u2JjWviS1Y2UmGJyaEF2WhWduXTscnphXzU8a1t8UdilUfHVu3/7quXGn+C6vzLty8J1EZTqOpsXl9+RTR3/1ffGisd31HtNFWrFmdXcp7fdB0SQm5IeI2GuCIuAWmPZSmZX8WSEpBYCtXBjkFyKRFIIglIxAUgkBxc6pNzpqhP7tYKMst2mOPQa3ZKKRtcRg6VGxUFerFUGSBCqa7pXPgMEWKSAAR0XTBBCXLrlRBCGFGM3CoYTcNksQ+QEEI1ggkiGBPiJRXdpnfPAiFAgI2w3ra0VubmZoamHMdXKeyGhfNTE8IMVdRGm0IyWOWLh2KXakR0Mlt9YcoasaboTH01MmoaePJSunfgWMX88VVta4iYGj38zItHm2D9p9d2PBBuhls217YMvTpxeQpm4jOnTyPn4iebNvxuZc2y8BXpHz/66tHq4Piy9UZ4r/no4IrX29p3taff2zRjEF7KkoMH8z2Push3lmsw8pTDK5S5tlS1JGG3aUFIyQUT0mHY5NitQlA19CplxBzH4cxhtsNsm1sOYyVjW4r8SzsJFoFcme66AnY9OdGoIRU1iAmlQb/BmeqOAkKAKL/mVg0ir6Flsd9duVFSKovB2Ls3KRDCgWAg4osEIDmbDIX1hpZme36m2H8gt8D1uvbcto0TZl3CqGhEzU1QS/PtMKLj0InGkV4YWTFVSE5FizsfXrZsOQRbr9D+lsZQd/LchZBPTs2vqJ4f7bmytzuir/FPhyYRGnuDPXZm3keX/eGGf1nSEkwtM+ylUD8lmjZWX8dOvFm89NgpJ/PAf9/6vr0DI68de+nmm52aCHYdkCfM8iVz19JrpFEidoGkUglPTdwFVahaCkcwwh1QnQ3MYUyYjGdslGNISFBxvG1zhzm2zSymwkPpcG47bu0gdZFYmbSkFOiqUKw80Pa+ugqHCaEaAMKIEF3TGFO2HEAIBIIQL8xW0lKOFKNSddtVFTEIMAYCQBAShlHRs762ZU0QmUHzUjrRb06LsdH5HKycrG0zxeWGNjHXuqsu0F6fnUqkF07kE+Ti+JoRxLtWVsQa2jb3LDt3fO+Vl3ctjKwM7l7TNrcq1GPQRpGKAqFbaq/s7HkUFffLN47YBWtmAtWuZqEKuLBk66qbPscKgcHzJ+dOv7b0TrN+5d3L7vydqqaqb33pUXNyZCzaW5wcapNjSbtVs5EPWcQNG1BpfVApxEHI/QuUqpIXl1L5PzcFqBLXnAvBTWZZ3CLMdCzbtljR4lmbpywoMiQBHFWKzQVToSAXqvyaC+CSqzZMWibFReFd4+pLtrdEPyLpTcAhmADSARFMNN21E1JwUGUfpVwuAoIwYIQw9srQkUveKzSIECCUCLSNF4yecHDlkuujWEcLJ+35fi07HKoJn5unh3HPaGX0ypTvrSu8zar4WPW5SOG5orbKqbrpe7m3L1dW3HHjA+HmxjlMa69rfujysqn82YWBd5JnjgdyvGFJhI/N5yYqJgrpU5a2Y3TZEr7qyOm3T1bNfaQTVe0h10Xai71zL77d+asXxm/1v7i5Kjkxfcpee2+wMPMnNcWRUwf+9qnJM5UkHPX3DlVt7Okq2gspIweG8FGCvGJHVKof8Jo7Pf8kXPAipfRmgyyOllBcjMOZY0vHwrbJTKtoOTmLpy0ocMQBCSEdLpkQXAD30n8eryjVVAKCMRVCeFpSHv9eFWMtetayoEpVEqlbwNRF85wLhJAEDKCmF7iQDHnd84BV/a/XXC2lREB91NCkLfzPhLb+ZJpcHx/5j7XZqCxMXn5jy1wmPTRfnL1o5fAMO9u7eumrF0a5ees/0+pIZkpMtJKeFV3ByOaKlpF4Yr6Yick66g9FQm276hozC6v6+t94/NnX7+x+rHFrix2Zms/nhpfd+mLLDYWfD3bjlZsaZlekZkI+jlf6K/VxOP3Wlf0RFI+vXcWHrfedPLdi6K19H9RO2UdsEB3/2bD5UOuZX86OLhmvWbd5Jzdap6bGXpkdHsfJjS3NQZ0QmZeSgwpsQLgpRAWT3NYx7rJmXr08c8lq5tjcth3bYY7tOJZjO8x0uM2ExbEjkEq9CwlchZHK8yKgCFOMNBUmaFTXiDdX6KruSa8h0kt/el7/WpRdhoddnkFtC6wanQABSC9vj5Bbk68wjpsBkkIaQd+yDd0BUpjrn+hy5v5kW9P7OjaubWwbH+l78fnhhQKtXb/58sxgdRaHsyMb4mJgXBoN4jYrD/lqnLpeP+LMPv68HBqINoYLmRyzbOFzEEaE6uGqet5xw+Ytc0a4FzrvDjZMRipe6svrtXX1r/D9N4jc8h00+bq2d3rNpivvJWOy/3Jdtjh4XTWxt//h3JqPiEvJ+wOpJeMXDow7S1du9xV8504maqrtj4cHxp/+Abnp4ZatOx84Hv7C3sffmefv6ejoDoFuCAmq9VK6GXghvEpPx2FCMMdxuG0zh3HbZrbDHCZthzlMOIy7/3JhO8LhksFi/TogwAgRTAnGlIBK1OqUGDrRderTqaFRTdcWp3791p+SwN4N1aRnfl3lQ1wiwBgJgVW0K4XwWrMBuZaWKHAEbhwupSBRH6sMMmxUNkdH/rBiJLh0Kfi7nEKhcWr+i2bbq5EF+8bOfDE4mCpMpxo2TtIfV0ZXRIKVg8MwnJi6PDmVSiTmJ0Zai+/oYibbfPliYnnOt6GhzampoJUxIxTu2Lg+PZmdmVxIYHwxE7Gs1Pu1VP42Mzp6uTjhP3PH7b+IrDDH9sjDpH9iZcKZGsgfb8vWd0yMP/r68/7awytiDl65qmb9+gNPPfNoPk4K+HQowUaGaqzRhvyO6rm5uxf6P5uNO/Hk+5c2djXoGDkOV5WfTDDhcM5sZjsOc7jtMMtyLIfZNrO5dLhwGGcCcSa4kEwgziWXnAvpcKkKplT7CSGYENAo9SmWTCMapbqmaZRoOtY1qgrSqEbpNcK7SkFLsixJ9Oqu5tK7SrZUSomQ9HKqoFCVC3YwxsoOK7yAMQD4MW/SknhhBCZziYPT/KHPBgPdtskLfb3RomyqXnLPubxGckaTOYDnTy7od7H2Gg7F147PjgwWMzO/scw5QB0bWqbvX9p75txaK//iq8fyl9F9d7xvZOSdU22+jpt31HasGEL5z548OTg99AdL6353dSPiEwNVgR+eh4vaHbRnbU3fBDl06IUL08uuu34NWfvmMfvYkf50y7S25lSTcUFYhealLbiz7qI/29HlX9UReHI2VwgFvhZNsbefyE1DdhKEljOwlu1qPmv6620riIscuG1hq1A0C3nLYZbNbYfZTNiOq4VMABOgMkil/JqaMiUxNgjSCKGE6JToOtU0rFOq61RTfUiUKNZMhe+EuuVphBBaYmhLQv2tbKTn4EsvuNatei9SAytKPVtYghTuKASvnkFKwEgCilLZ0zBn2EX7TLHw+P6LNSs6Gq4HrqfS47l02pcVOtaqaBSNJ+zcIMRWT9f7Th0bva3Q+NzpN1dU92eRk6zRe3Z04ptqVrXH1o+13fOCffDSpRihuStTS3D1sW89993LZz/yuU+K5vrzJ5JLBlO7btgSjsQOpZyv4+DLq7rs2J0wWowVWk+syoxEQtUNUTGZG6Szozf7z1ZN/qXRvzObH3m5KpvQXz76lLjPeO5TD2iJ3ov7L538ufPlvXIqUDmhVw80tuSoJOu1d9YEhs9Nrjw/1VQpm5rbZu3NiflEwDqj8SnbYY4A5kpRcu4Wg6ncgwq6iQrQXXaMGBqlGtFVAZPmiUuVnnmFooQSTBACrLAQwYRKWeo9XkRi18jVC04AAcYqbkaoHLwpzsiTFWCMBCAQro1WA6pUnCXdOAxjKVpCcwHfldw4HT5Tl7OqZx75SFukcXhmvCYUiGzcnj1xMCRPyraWwNHG4UO9T38wFb5hx6sdE5vPmIa0kZ9lgQQ3hD78pU3gr0ilJqzNhYVM+KbNnTWzJ37w+Hevr924kJ56/bljN4YKG9bUfnlsnK69Vau+OQ6I+Qq1+vntgdTt3ZOH+vKX5mD7pnBrrO7Uqz+9Qb+844GOqvtuXTHZf6s+OfYWjMvuHes2PvfiU5VLa6pi1eeOjr51uLilAKMrlj299Y+vj9T/eZimxkZH4vsW9k9smyoULs6+pZuZs1lBAlLG/LRiZUU2SBJMpYK5G7cRjClBukZ1jeiUUo3ohGgapZqq/vSIM6ry8bjUxOJNrHMTSOCFeWr9qZRcZetck7jIHmAAgRFerB6UoIpz3FDfk7fbJCQBEGCMQUguBUIYkBAgkcQSQAhBkJSESoEAI6lR26BzscZpZrzUN3zxSF9NS1s/3fCVV2d9RevvdjXe0xaRy1umruTnfvqLJQfafzk8+Uq478FNPaMV+O97f/SxjviZCbq3tr6jqn5i2tT8k9H6TbOdKb52cyj6qdf/61+zJ5/VJl/1cdgSpHv6DjQG9fru4F6UKMqqyljDWmBdiQAxD7TUn0klXrKNYm1TY845Yt01VZVxhmPWYXvPrqYlMFzra5hc1nx6PJ1e//XPBltC//D/vv/ioWhqyGzb6PzpJxq18fSDvsb17RT8YUDXcQyj6YsvZNLBgHnMTA06L/lodYJUaRLW1GqESgRADKwRrPTPr1NN13TVgaRpmldAjwkq1c6rrk53xAgG7E4MQWWgxYt6EQJApTFRXtjraiTGGCRX6sRL/AUACFQaKVfKb4M7mAQ8ZIuwVJOUvGmFgvpsvYXyZHXQlCYf0Yzx1qazhhaZnz85cfHk+JSviC4dNEUhB6b1oRNvfm138dO7mhrbUq3LBicn+nc+QH73xqrjz/zorVPaQ9cba8Lo8PecOONLW7e9PeLrn+j7/T+8r7W1uuiYGibNj3zWNzw5+eqxdzAS2cr4+draz3VUb+ux/98Tv/8nV9579907Vq5aO2aRhXlx6ZlY//ligc6cq6hd6ujU99J+mAiPdyw3teW3mKi+puYpNHzA1/nRHevfe/DY6W9P7o53rf188DvvXX5o4KWDn9W6Gutj8vD43IWRucRkbevyA6ODr/Op5dnK9+gNp3zpg2yConxTTWd1RZggQYnKNBDlC93cg+b2IbnDB6kasesOykIAiLjmszQNyOOaShU/SsNALtIIZXFIyTUCAq/+cvFVHs1xFYJyP8LL77npQ4QwwkJyiZHlW31mfEmVPrFriy3PPkrznVtWfZYyh4bGb7qt+N2BVCFq/LF2YjBcPRHyT08Nzg7PkN13yq6Pst95xH9XfKV1PDp8cuvTTt0lTasJTP7xyp4/1bRXJm68887acNXIr585cnxsz/WVtZGKvGU3trQM3HXHYwPD58fTX2XtdaavILQI9XeGrd0jb4cfv3jYt2bVde9H5hjSe197Wr5V6P69PQ9DNjSitb4iLhbt85sjTYH6pXb1MrHQimO3GUs+PDwz86M3z8SjW8hM5viIeBr83d2hxhpMuJk8eGn/1LEBmLdmzr+ArX5aGEPWOlbRygIV2Gf42cqgqMRBvYoSQyMEEUKpRlxd1LCqpVDjkhU1plgml0dzy7KUXrkOz2MXS3jGLccBBFRlvSSUDS4pRzcYqyGtUritnCo2VpTdIlYCEKULIYwQlJo4AaQ0quftVcdOTHYZMtkdSR7vtbbuaIg2mGaxSPyplQxqDmmbb7kcafl84YlYBKWWbyLBpsLADF1+n6z1B7qK2dPt2Rebw1pALsMnM/u36OaO67pDbRXVAT4fjyf6Z75/7OlfXLryoTuv39PZUl/XcssHPykaG1v+6gekv3iqkAq+lggUhoYvm392XUfAmtt3ZrA4lw7FNFzfLbS+cwkcijXITDSV79i9ef1ccfLEmym9eq69q57XbTOja2kilTx1LFHd4WNR/3RfuurmN3yhzdsLsRTKf+/48elTia7xqjrt4HSub9zhEq7I/BQUsa1bVIYKbPpYok5WhW7SA6uiatigx16rpBQutbQqN7hY51eOQMuxKri59qv1SgJIFXe6YvIsLYIyfg4hLBVHKzwPKr1ZpWo6a1n+ryRfjLEQAkAiQp3Ayolh3+zs4ah18ds/bjxsrbnt5g3rJNcQHO4//+O3nx/a2HGhZcPfbu4wcsVLP/9KYWr/ts4OLZdi2wdR9/XWubm5Zw+fPHGOr1iz9JG/kme3vvH8f1y+9Fz31iXB1PMz56ybTk6Nrr3hN/PLnvvh2O6WwX+8oWFdd8f2FatP91RfuHIhSEXunewrb7Bczneg2gnqAX7T8gPW6Y+v3NXR3rNj63fenkzmilYokXjt10/0da2/acvN86n2H33r3Jrrju65fm0FhP2H9y35xb/Urvwbp77STo6bRuDsXPc7T852oqrj/a+c7koXm7ARdRIZwQBRjUofsZn89Aq7meIfXuCn89OIZXrO1SxfXqtVBZFUle/ITWFi4lnERWLV9WIlf+YKSaqKEE9G4BlD8HQXaFkl4CI/4A40KCVwlLTxYnOmlO4geFXXUZbEVRDJ3QhCQMTvq21ctm/GzNwQvL9+6xY9Zp0J/vszQ0enX7y50Zm1RtGWpv6zZ7bab326Z0l2asm5yB3x+DheEFqf1SPP1ARvGPvWqy+NHd4XMz/3vuazHfHeyZrC+YcDb4qXe08uv7en0SoOZPvGzvkg4Tiphfa1TfVycv7Vtx4z5ve3yoloenWd9fcfqRh5mb1yKfD4vNa8vfmhD9zz7IuvBfP8z/TuULO/O5SfTyZjli8RKhydfu3M0YXcDQ+vzcUib7IB++wyMUEpjrRUdZ4/GLx+Y8bQt65dUl9R/eSz364IPN/6yPzW+i194XW9/ReG2TkG45E1nZEHNhePXVzHz7cXCk4E9/mdhQxMLGjLC5a/qYJLLkEVLytb6mJL6f0gr/UFlQTj0a5lZI6QZRyiW6AggUq37dyrjCrrbi9tGUUClJXeuHqrhF96pYTyJxXzLOp9qAZPNvqMCv/O1uZYcwv7KsI3j+ZPXHg+Pzv6eo44uzfPv37yg/fzUP6V+NkjO7t2n+Cr+nKc3rlt4Nxvbnv06empwx0wo4Xr/n28abLON+kv+khifUGz+vGPfh2u9IU/sgZvKB6OH9vfBfC7K9/TOtv5/UefeKKpGOqurAW2ZlVk886NK6+cfpzcKSPLSfuFTLEw0T9RtTKaZpUpuXp6WTK3erhQ1fHeO/8xvD+RQsxkmaw1u/36HfXOoUr71/L+H9n3fmDNd38sn/4xTYz7/KuqO9r3+bH/zpHVd7SN7e+bjt22+45lW2+86/j5s69PDfT1D39me2xJ9a4zb59bmJpryDrrb2iOdS2PtlcTTcNAhBQgFiny8sgQAZTbOlQu56tYHcWaS3c8o4tUEF3ESd77ryUHEFLVJQhhxUW6gYo3ncfja68qnFG/YIzzeYQPvfxg4fqG0aUzk2f4hgGtdsWtHcs2Hzg3saKuvem2bKjyjodCYZw8vPeZ5IVLvp6PvT66cProG5uvr6+pXn7q7OViRINCMLfy4WPsDvj+s6GNS83d608fmsB9Z2H6QqJqhdVWfW+TTSYy0TH7yFO//naotk2f//0xM39ppMNiFTXVRrS6qiYMCxGI1F9JOJPfPFg4eOkx9tTUR2/t2vzZ6jUjq1rIXCaGJsStnfx0rra//7VH9pzsiV6Mp8XhmXXbzk/ndjQtu/fWj53+xpkTZ+fekhMTfbOZycPnuZwe+OU5X/XO07c9eF9V/ZK1m9ffMjHxylsv3ayPtbf5Vn3uxqFbRt96bcwx6js3LXEkEpxjiYWUAnllcHDVj/Ry3SXLW3pCybVU9q5ykW4jimJu1Gj/ctktXhEhISVWMxQQRiCF6vdDGK6x3e5nX2Xq1Q8leCA+c/S8vq5u5ZmLRz7/3q/zoYGTT+9Y9b7fOUMj0Yru+yu7p2cmRntWDw+OBHJHt+/OxMe/Kgf8d9ixM4kLvTe/73jzCt+rv/rowjN/Wuj/+ZGZ1zKX/67m1AV64y/qNhSyRZg/AYmRNy/r22pI83J4JQ5nUXG6MPmFFVWFcfTcfHYIoL033/r2xfG+TGT29XzEsLrusQ5JYp45eexI+L3LJ0003z/Q4Cxds+KGFdk5/4HDyYn4hrpjG8/M50Ze+N6mf/uVdedf/Pilad943JLLV60/dXDaSWSMvnFk5r55wtgbKN6ymetTBxf6OiurYj5/RU9Xd0vDJ0cHTv50369r9NGd69tuurXj+bcs2xGaz5AYcy4Ury3cOvMyAk7K0lEXUCrN9Wb7qdJI4bamesqqAhYJICUiaLGS7xq9FEIgjIVYnMAEni0VZS4WSqoKbk675MnV30cnZqdy1Rs3ipabEhXLfYUz+hO9Q/viZ86salr91EsbYr8Y2nDLH8T5wK9f+5Av9eX7qmvoALrzkz/rbTbNqdTZmcpiqj2Yq08mD518tQLhra3bz7/tm2EXVwt0XiArsgJyIzBbiF+JdtRZ3a1zlRl4f5gdn87+bJ5IGhlDzv1Hay5fwOMO6b6BLuC+qYF6Z8UWnkvke3+69tErkeiwPnEkeu8Hm6Kv476DuYErm/3ZGj4093jhDafiSWs8bk1+eXTv3akHA1XRHx88UrRqK2iQ5WlXbUuU6ksrxv7mQZYYnD/95r+PnN1rrbqhbumaQFVNTds60Oue+c2jP3thb2PQP5OsXLM0XxXyM+aWzquzVt6llG5m2atX8WCpULPeXUAkVfetO5u6RMIiJCUFQEJ4WgiAvDJOFX0izxyU5O11gsnSH0t1C1dvCCQBHOaEO3tuuWHdsjXGttjDgbn6iZP/+KbIRY+9+nB97cras3nL/8ILF1fCvctk4a5KNH+Un1xunKndNDNmAeHhbOqPHllvDkbJL0++Z+3pJbetmD/MnnzaftZIhSvmekhwMjNgWuM1EmXON4SX6K0N2Tfipk+HYdu5YtNvipWAtf328E+d3ARY40cHER34w0jfhQ2feLFtM8/O1Z+a/9TugHb/JjAv8DMn2NgJWBPkxrLX87t9oVOzM+ZM71FsJ1YZVzY9/0qmpRUuXUpZjBoV/lrfd39XXzo//tkfZh/r63z4Y3cFf/FTGLp49lj6B0/u3bF108pNWyrqm+97zyO/No1XXn61KobGFnL1TbUcSySuArFXpadKoYOKNMViZxBSBbZuD7yrM7jUzuBtiWsP3ijPk5S0rcwCX7WbRNm0bQCQQpTxvEJgHOretGfFjkikChCWQGEiWSfHv7Bd33W31l6fh5g88uL0yOFNH25fdXx8fOvGaJDtL4jaT9QVf7Cr9mJvxaZEssvnu1RZ99RcLDdv/OENwYIzfCQ9IqIriokByZPE7o9ScwzId1OTy6dCN7frSb/4UdEnKMVBEc/h22XLBTR6hkwNSViY41EEibkUXfgvWPlRWb/mnHNYZkLJaS7XbA6cfUqcKqZvfPjNW37/b8eicOXf7fwZgYq3143++EN1NXNnTx27YHL9rBPc3FS/647r18TOBWuufHhTzu65HrXf3HTj9GjLldu10C//+sC5S0PrTp6/6fY7Wpcuu/3OO+OW/mZ463O2s97JYYyuSml4yuCZTYCrni3LcQFgF86WJ0sUaFkUgSdO8J5Qg/6Q6vVTzIKExbEzgABJEOWAq/TNwK1kAyRBSO5r7GpetkMLRIFqPi2AZ4+R819HlnzkMxtTLPTx5O/wmWTv4f93b33DvTdl1xYSOPLLgBxJPaG13609IZM/mF+TJdt+9dOjI0E0VHPbFL355VfssJytfSC3TQQunDw9kZzGMr3Rji6VVXv99GwiWYGsMMUjNgZN10PkB4HZM8n5Xmde43wpJlo0YADfm3esheFbzv1o7dLtf7x1ueavkg3B7MZ1Np6vm+nNv/Hm6emmpRUrvnLbzsH/uTJAL/7uPZnKSNHeuodd94Gbv/uru99YaI1X1r+eHvjp6Y6vdt61y97raHMpp2X1rhdfPnH0eH/RBNuxj504MzM7f+c997YvX7Fqzep3jk+8MmTeGNRvWhouukyd6ykXKQKlDFdrTKnJVCoPiZE7lvEq/OupealdF3kSVbUmbqMLUoSBxIKrgxyYVENWZYmPKDewJR+sZpkZoUqGUUg3CODCzPno2b+0T06w7iWGY/9mf+7RrR3gi4nIqtVjF+L9q332eG13avBE2+sS3cWLPaT1r+Qv32oNjDfd8P9++KtGs2ByX+v6NWtv2f7g9bUHxwq9/xX4QP/4xqh9bPxEOFPcZEROcnt4iu/aUmXM5mfGE3MieNFfGIniDWGcThAOldva20fnxychsayIH6bF5H31A3ahfmyf7/mg5ssYD60rTFaPvT5y/tQv7tj44OYlTU3mxZbU1Os/wrH1xbW1nZP+Oy72FI4f/JIRH2ibDXXfvrk4T6QdObb0k08+c/bjxs8tA5pWdNRODuYmc5Ti8ampF46+fYvfqAtV3szPv9Q39Exs5bbWZUTTlD5hKAOS5Zkr8Io0vYC0hDkRuCW4Krpw36PiFc6FkFSqs5W8yUBQVsOHAKl+UcoZFQy4cCQUgQiEpHueyVVFYljxDC4IFpIaAV+wkE5Mjg77CuMVOevgZTwdaL171Q0td3WsFftOJy9XbZg8+tTI7/3qv0JaeufQlscqPkpuOfO77T3Wk3MHe9nLl58o3FeRujETfeLknQ3L1m+tEWbtP/3L6/uK2HRq7unKvke2PBa/suKObZVa5ZnJiQv8xIf+ZGcDzSf3H/rRs+mv9XIZpbs3+vtG7JNztEWjzT7thkd8XVOF4mTnVzKbXpqa+t65wfhCikxHN7MdM8vfe+X9Kz4y/9PNl05P/OQs+UBgif2+uq4sXpvw15kNzlD+lpsPXDn5woUrq7vI7X/+yWN9ky9PBa+cT28eeCZ2u/aFP/gc2BMrK4LfeC4+NHhFhP2XmoKBsfN3tq7fsXnj/PhIbWEcy2UuclSGzUM3boqqVObp9caUCxypWgCPTHBtpnD7+DgXknFaknzpRYtmXQoiBBFc4w52bMk5AawhwjF11Lw+5FlwUNYCAQAIKaQIdaytb189fvns0TfeGhwaW7JurdnwHvs9t3WtvC7V3EHiY9Vvv9p64VJgNAOUn6/INhnhf5y644M34S/f2MbP9skqdHrW93hyoHb48eLN7Y2HrN1OeubQiYZ77/vQTc4j/lm/X19XpQ2/cIX0WnxgAJHa+3aE72kpTp7dj1dWN+257m+aXt/wSv57F0P9pNKgdqiQXmOO3/ShtljzXBD3vTPXf2zAzi3k36Di9i9vrt+9fvrkY2ntYW3Ve3LnhnzdT/bFe8j52KqOYMOtGwPLw/nJvprk24NwwyqcM0LJ1Xd9LF9gb8wa+zNR+tZzq1r21Wpts2d/c/Tk4P5j+sc+8LEf/vpX5/t6Ky+OztlizA6tXrEqGokkk7OMOYauudbNlWVJWuUkTTkdK0o11yDBHaULpVnvUgguHSYYdxxOVTfZNXYYuXVbEguOOQNmA7OFEAgQRhSBqtVD0qURQFHvKh4VgmuVda1rb0jHZ5/8fz84eupcz7ZNLUs6fW1dHYTMLcQPnzkCjv2xhs2yfpNOESa0ePLi9x/7zWZneo2+IZMVVRtE0TjXHjAa93Z+7WITDLPTiYZD88MHJvrvXWf8/RdrITGVnzxoaS0dX9jVn7+Qqd+dzuZC1neLg8yoNfjzE5emLjZuC951C97akPzwKUpzVR8j0V3bzPoVI+mnLKPnNs0/Vz98ePfy6O5dq+YmBsjeX+bSM1Vr+jpqC/tSm8+tndz1hZbhN58bTT4XOnSsa7aLtrV0tLDq6kPrP2Bd3JeezY0ePOef1dpb5gY6zWePn0+8dWFhPu+fTmrSclpXTH78I49895vf4hO5uF04bB22stmmmtqxiUQul/f5A6DGSgvhxotqzT0MUxKmdPvnJbjHHgkkBEgBqoNP0QjSPe5BjZ1T/RauWgrpChZhLLnba8E5o2rOklTtkAJJgdzJad4OUPOh3cZmUdG6FHP0+jNPj2Zzn/jLP1m3eh0Qouk6SOIPxFYvqQwFg4bfhwiRTFbmmHPIPt9U0bS5ncnOv/7qqY/dlNp6x45Hvly7ZMNb49895BwP3Y+a62t3jrLswfPH3nwStVN+7mhxKtD7yY1oXW3U94lPTJ498/zXnh4bKnzqunqkIV9gIXUKvXrZaQjFPjPR/GImmQuGo9yQiZm+vpTTdc/ltcu3P/e9vwive+fxi/04vyycDVqW78Qv2OZd9Q1r3nrjUd/or41sNp0L3Ky1yh8fvJxKjH/wfRt3rl1y/faaRt8//f3T+4sr7OU33+07+dV/aXvlBxc/+ij+on/N6ah9gA+/9MqLf/hnX3rgnvuefvwJXnQGRoZaaqIP3nlvRzUxEAjOJOcghBpkpgTm1edKBMDd/kwom1/oVhOBlFhKpZgutQpSIsCYECwkFhS8rn7vTQhKR18hYEIqZk9BKQbAkeTgkYaeOiPXJQsESCLsC1fNDPcNXD734HsfbOleceztg9MTU6Yjw3pxe+XM48eK4wVcHQt1VNY8tOMmPGxNJg7//eO/d+H0sS++rR+s25R+5fwn4wuddzdsf+/NncuOP/PzgX84U1gRn9q8QCJXgs0XbqqJVexIz/34qW89/9w74WVfvDjYd8g+PhL76Lc27B1+7UIvlTu+3IKHZ97aJ2OZyO0Q2b6iE963+hRhjXjP3D2JlOPX65ajtge++ZtvNAWno7ube3UrYImJd4ZD6eeX3rL97YH6t944/ef3fyF46wYKvjO/+M/XIwMfuOvvFhLj//Q3f/eebv6fq4wnf/r6qbGzNR2OnN9975bAJ05adR3LdzZXHH05eXl0cv+rr9xy172njh0dPxWvDvtXtzc5diGTzlhmVUgKhISacVKi171xIlIKid2mMyRAYtdKgnKw7mAqQoRQaAoBAOYCYQ6SSCGodKdBusJRQ7JADYIE4BLZCEtMKBYgBceIYyzAzXZK7yTHEguPEQJMAKHMgl4HD55+2X700W9MTfbnU9mobv/L/ZnVw8V/fNs474RjOlq/897gK6OvDO/d+e09BZb9xtzaAxUr/F21T89M/uq5iVXnc1+5w75726bPfKm9+fjFx59PZdJNG1auiaBQMj0nNlTOnl+prfjc6BXt9TceTX18a+XajU0Hn5udL1wCDN8d69kRvu7OFq1xQzIXqqraNZYZHGkLah07l93Qmhq6ONJ7qWX3hozd9dnw7IXTU99NW6c1nUfW6WZ2/9CT8fV5u6rq4PjlzhctEal7qWLFb1Bq+9RYZC556XjmpSkWLcZtq7jGnowW6U//5qlPfrb6Dx5ivZ3LOnbdsz85+fYLLx05/M62bTu2rF9z6vxph/P49LQh2fzseCFXWy0YCAGSuyNGJEIA2E1CqtmRi+ks5CUgvTyzEBhJISQQ4Z7aKJGUQlUFckbduvXSPgFQB35yRdAK4BKYal1QczQwlhhj9QBcjlGWByogx/v7Ro51bep4/xSfe/zVt3C4UFdd+ec7RzdD8Ultg/jUksBvTtiZwrPnTryeePmLP/sg1DZ87FD1s32N+OwRqXWT0fSNscaty5c8/bNHk2+du+nBZXft3LW1ZfD7rxemVrWeIVUbdt2nhQLbG9qc/rZfv/VvY/wF/cjMyPGjT+qjH7yepi8xtnJl81+8/wOsgAyfBA3BzMyC/fXz1sFXnrt75031lRVQnZiYnT4yxZuqtc9d333n3isvxgOJNm3l+zePXTplVuHAw3f/S8qe+JfHr+96+KFH/uLKK499/uN//LNb3v/T3Z86ePKdHw0ez/fUTU6PsWxuZNjYUoyuf+h6euRAKnPD+nWrD715IJmzhy4PgFUgtDpEa/oGRoqpubrKmFkoCMcB12UuIlj3/EqEyFUUvBKqNyVRHQjBJefAHS64O8ucM+bYzLJs27K9liPs4ikP2Hh+2HWmhCOEkCrowohgVZ+geoyF9/EYQEoZlPbBl5995Z18d/0ehCIpfyEXW/aptedub83+6CfwxvuXiq2r5MGzEC/2sulYAArJ2R8PbH32ZD289HPR9+PW8RV7rv8rnwjAmbF/iK7FT03+8XNP3PK+lo9vre6JBP/zyv5AfDqom1vufHD91u5/fua/WeWZ1mB4/srJdU2hj391a4wdrbmSnpwfnHn7GaOpbiaewfSmybGm2eorI23LLz2xPzA517NxD/UvGb64f4EM/cP5+BsTqUlT5AoJfYZ0r6zrWVr/0j/+8PSzB2lz3fLKuqH4lZSc/fCHP8x/kPnVEy/+/obbH/7Epx9aeN/5i+eeXTvy47dfsizxnUPRPwgN58dsY2Wmpa6SIuHTpJManZhZcLivMbRhWQS1tEBtUzem0o0AMXInwyuJqdO+1HkMLpngcmtusCC4ZFwKIRzhqP4HxmyH2w63bOY4jmU5pmlRrk4ZA6wiDm+0nIeR1fQHRd0idy6yG9gqG6H8JQBIySWEDbYpMnBifFRn1rGhK8mcLXquEy1bOqoGe0dX/nByMPvsCXbw0t/FzO1bA4fH7bdx7dP75lJ1B1cuJNZfZzU+8LGItW5uEj398r+urs879/9+b7hybB4t788RPbzlpXN/vsy5Z4f9o59OZo2K2269ZfsN7SePPXt/3bIxO/vmXZ/8+OvxG/uPbKmFFRWpQlaSQPTY24H48I7esaGTqbMfvfOlf7+1IO3i8Yv+qvfd2/rJrjffbEv88mcDNTntT28R3/qNPD3Y+8S+2Ja1PJ8PDc4EJuZy/jqtjj73xqP37fmQJNq3Emde2XvuU+MnP/x7n1235aEl75yORgL//dxje0/OHz4rAkHjg5XvHDlzPpVNR9buHss5EYIjfpws5gI1TY2RjBYIWjwLEpTo1Aq7/R6qgg8TjAkgNeLVrccVgjHH4d74LNt2bMuxTNuyLNN2ihYvWnbRZgWTFUyTCsEQwiBVygbAnczpJsigTPNLPfllU8URQlh4b5BMNKLZsH9wlZE6wo0lMeOKzxgcPqkPHT/C/qDQ/P7a5p/NTD0emclXbY92rmnujMYTR9KZji17tmx9iErMazTinxhqT0GchVInDL7T35Lb8BCgW146/53gXN8b47l7H4qhNDtzcebxf/96Q0Pd2OTMqmDDH/fc+28DT6Q07ZkVD795dHT1xafvXB5d2169gTdHfbe/MRg/Mv1okp+rHuNVt20Vc+aZ0weOGmc/deu6rZv3vPbCIZ2fybRV5FY39IzTJecbRy+fCk9ad9/bfd+W8LcfHdt37sz4zHgmP1hIj8RigWlA/z55+MTXJj7/yc/b/Ve6dq7eU1x47JkXzUCF32L/8o9fj5t5EqhMr7lvKKrdNfta1cDsbCqRLlSk5scqKyzQiXTnHrlQwzt0lrq1OrDYIs8dW43VcizbcRzbsh3LMS3btOxi0S6adtF0cqaTt5yC7eRNXrQZ5YJjJBAgoQ6ecucg4xIli71D/Mr6j1zqQNl8j46XzSLfjSgU7HVtsGPWwdKJhipyNqv0ySVLNBzyh0RPISsDVfo/H144emy4ipAfxW35i0cjEXrHQx+cmZycGB/TA5HujR1Vp+7rP/cdOLeP0eZwdcuZOz8SbzQmnj5w/cEz35zLPDNq08SFP/jIJ6ampnWh3fPc16pWNN++cOa1rtXmtrvj+y6Nt26o1qvQeAOrCZ+b/35anKgM+wqdf3/g6K7k0JWD1sj+sB5PWcGjF+Kzx8zm1ANVzVNdbZVVsQ21d+ozz93zyW0Lw6cee/nN5s7abz+w0UxPW87w9HxlWBeD8VTeLOxLDe375z9CVH6683duv/f+N45eHIrt8KH8ismDq8PwxkI2MTwwumr90GzGZ+eETMXNOsZ8fp1U1VRiTZOAQGL3EFAhheTluRXBheCcOTZzbGY5pmXZpm2aVqFgFkw7X7QLpl20nILpFB1mObzIhM2Ew6UQQN3ZqhhjIQG7A4SgpJcAQgqCiPSIxDLq3/1BGAshCPBOarHecbO+UNWE718ln5iquDhFgxq//6OP7Lp39/ED79T1HL+xolqamZl5eMKMOcLh4YBOYs8891ZjW9fajZt6enoKRefK+fRDm0L740YwvV888Pvj4B8oLrswOPFgsL4h9MDLh385v2W3kSV8+AWKwJIWr6pZctvfXR6/VHPk+VG+um3dZ/qnElMzB977/rbWLcVP/V7LoRea+idnXz3ykv/GFbXdm2MX8x2HXlpx++cn2zdMtf6X8Zv/vLLvcHRw9sLlwxfPvdlWS2956K+37/j83qer77sO71qRn7kyWSho//ro0PnR3MbVO5c2rP/Vvp8siGnExavPvdzZuezGW+++Ml5bqOrq8fNvhk59bP/k3olTlQ0V+WwyYnDDTM4VRNEKYmEGI53I0Fk+KRwGbnmIwh8SpOQgJRecMcd2bMu2imbRtIqFYrZgFYp2vmDnLce0maVmogtFDgFG2K/RkI8ShKgazSCEAKzmHmHkMQpu/IqgdGKX9Kr9VAm9YiAUkcgxuVLEdhGbqZpbmhKdN69vfXF+9lLGH/bV1FSPzyWaVkVXr705XPOJfGr+yuE3Xn/6udP9s6s/9CfpmuuPvfLqz3749KpjJ1etXtHS0dbSXd/UtfvmO1on4unXctHMr3/5OefSby6MDVRF9Ls/ev99dz386Y/MnbtUkc6np/r+54mRIiPdgeYDAxf6D//jth3v277zS796+tHpiTemJgd+57OfuPvDDzWg9DsH45cn7b/9zsc3LNt916fu+MjKPefN2VyoJhrTrGQi8+gUTRSrwgGrmJ6bT/e/uXftrl0f/p3fmT77wuf+7NvziXTB9vdNk/mMc9N1jyyJbd/79lvx7IS/Ihp9eOeb833bVvS8c/jX1XMdqwrxc0Pjn9TpxPiJdKYfKklHdVAg53JqwgYOToEjCpE6O5ezcinBuXTH7wqujk/l0nEc27LMopUrmoWinS9aRdPKW9xmwuGceyNTdUr8Pl2jVCNEo+6pOoqxU7ZSCgCMFscnl5XllgrAFutOrsrOKKsr5aSvAtbGpicSwYmTO64vBDLTzZTmLJ7sO9IZcSLLd/sb12LNCNW11y/fvPz629/4wX9OUEG4U50YC1q9vlyABiux5pOADMOoW7rKXxV/6R++8ZnMvvem8gtZsS+iTW9tvXPrPcmFiXT98HX37Jg+N/WrvfLS1Mz+fY+h+ZlwMLyrY8/FixMzs4eZyPcPjfzbP/z768+9cPuePe954AuvPxs/MfjIyWg8Egw9Emv8YEP4hlT6+YVjbwTTq5esq62qef3lV+fmzD2rN3w8sKHwo1eKD+/R6rdHuuK/2v8LmzmUitpIc1ft0tHeiaSZAoAcZ5GNKwoh38SBqVon/WktR3Ds6FRjU60dIKmmMEESpGDXNTstlQMd1WEsw5LopLLByWUTU1PmwrxUEyYZszm3HW45rGjZBcsxbcc0bZsLhwkp1WGAxG9QXaO6RjWq6bpGKdEp0TSNqsMa1aFVSudUukVNRweEAAiUSCI3/w2lROvVZb5SwTNFEGKCExnz+VFnR/elZAZVxapy6VS8v//p4clC8KhDY9TwR2PRDTfu3n79rQ995buP/cvf50ZmO6IXvvMp/fLRty9Pb6xct6IiHFERbaGy4fKK229Lnh8rjh2i/A///R9qrt/ae/zI8bfe6D1zuL1ife/ZvukExxjvPfo/WIqaSLiiueHI5ATB09HqjkJmtmjmjh4+Mnyp//c+vGnFijWVR9eSjdf/qnLji+/MXV+8/Omt+ntu3b62reKH3/6fIXapqTJGHfv9m27qqelOPHPkN+i52j3b99xxm+TyR794zLLtntaNAb36zMUnTZLWNEPmzfjJy+1rup5/6qmRoaF/1yZX2cE/Rpv2p8dEI18aC4wnc4zadVVGe5sPqI8jIRE1ItV6rcWmZsb7hvKptHsOD2cWE7YA5p68AxQTjeKQT/dp1PAZhqbpOtENnXjnNKrzICgmGsGYuEdauXEnUiyvkG6rrZtuWzzspsQyIO/IqVILPoCX18YISWk5xaEJMTRENmyNTk+120Ozj5+YqfQlK4z5Jds2t67Y3Lli6dKVa7htZYvOhtvuPv2f3+7prArXGuFk7/4nfsmBrd+6JVZZFfL7Z2x01rfyT0bavnDD+rncQR2hs4cO7X/5pWhl5d0f/J3LieKZhFkRO1GMxzUidUJ0O5M88TU5xh+8/4/i2fA7b/xd0Z72ETKTnOsfOXTXndff8dyWD8joz95483+Cxpsmvq5vfPOqtjXrN/z1V7783//2X/OT4+3tbd976elUx9qsyP762TOf2by0rnvpAx94bypb+OUTj0/MjTz3wnMHRp8gPuqzNY2j3p/vG8dv5KbnDZ8xwHJSmifp0Bkj3W7QqF/HOBSlBSPoJ6GgkJQhBMGgPxgNVYlg21LrysjIlQlmWapWGbmy0YIGNTRKNc1nUEOjhqFruttapk5/QAQTjCWAGrKMcUkIkkpvFJ1UeEgIwOBGRV6dyVVtKqWQ1BuqsMgJgRRS1tXUQEHMksTa65o+MMfPr7s+sPfI/OjoTJ71SLbrxu2SBMYH+7Op5MWTZ6Ynp2ZjTeOD5wF36T566Njp5072bl2/tqejtaW+9uzym8yFimQqOc1D7/vwI3/5B39q2/k77739urvvj8SiUsAN7duXbR898PrBA2+9NTo68YWbtS+uPvRfuTXxys2HTu1LZdMECTBwAOl5OTk9c27jam37+qXpf/2fpyb2feRP/3Tbhk1BDYNgnUuX/sVX/ubFXz+ZS2SOj099beDIbCpRtNIzfRe3XL/HKeY+/ukPT0xP7j9w8IdvXgQqAsFoZaSiUMxzUy8W0gahphABrMV96B/llWq/tpVGBOMG4lIAR7qh+bgDWm1j48r1vkAwJGV1Y3vr+i2puURy5Ipf13yapulU13RDnXxLsTrVSg1Zxt5AO0zcUz2uqtHzZqCAgPLh4eCVFiGBBMZ4sf5agjtjGS3qKy47Xkl61RJIIsuyNi/T12xaroUDDUFm52oShd2vWAdDTCzZefO//tXfrt60uaWzs2gxxlGcRMa2PRA68QpyrkhTcA6W5GNjk7RonT3Ze6zqDnG5T8r5pxfWvCdm17U0Xzp9vEJHlVXVBCMpJMH+1p6uB1ubd9606+grb25qPoQCuYblD56bLkT5qb/8aOvQeP7FAxNCx0dPHY5GUWWn75e/7Ht17jxn6Zg5vWRJj7CKC7MTacdqbOt48MMP//ff/4NZzIPu14PBbDF/8p3jd3wwG4pW0Fb8+c9/cmJsbHxqEktq5fP+5mps2wtOkUtRpxuObYU13ZHc5KwqGEEE5jO5qUyhvSJUVRCBCiQwql62LhyIOaapIVxVUdWzbBVh9uhRXaQWdNcrahqhCLtHH6tzIiihiGDvnEAkEZZSSC7dQyg5V5GqkjCGUgmugs0AXOXCvDO2lOJKr+CzNGFVqNO7+OIMXYwQRpDNpHLZpOoopRqpq/atadMbYgiSc6++/JpTUT+bzDa1d2y/4Yb3fOj9yz/2ezlRR6YGkGDFgjARBiGLlrlx57br7r+XZggc+rmxZuXC6g995yfPEsGCkeqzx06KbCIYiWoa1aiua0YgGOjo6Xzwkx8ILP/IW7m7Cqtvy8xfiBnn//qvP/6PX9hQHeR5JoamJg+fPcei5Clr4KQvoWvavhdfG+k9H6usrq1vys7N9p89VdXa/uHPfGxJXQRxplFq+IyzfUMvP/m4lMLwh5avWfXJT37U0HQMEoBPJxZMALAKmWJREC1gGHXRiEGIEDxezGhEEtAx1WyBLFtIxjKp9MHjvQfefPvs24cTY5MGoTW19Z2r1i7ZuqOyuTUci4Wi0UAkYoQjvlDYFwz7giE9EMS6DzRDUp0BsRiYjrRsbjnCcphl26bJLEuYFrdt4XDJuMDCOzBIqjk3TEgB7olBi0UQLiwSslRkpAImlSIvY40RACZHJnjG1gEE0+okrVhaPfvxu1s3LWscPH2iqas5trTnhaeeTSzMkYqaK6hy9O2TS+gQQjie575Y9Zc+s727Uew9eGT3jo1fqh793J2NN9x4CznxaoM/ly3kbadw/PLIT3/4k8TMtOHz64ahzvkyDH+gIkaW3iB3fS5cY9bEhvqujJw8m2vdvPNDN9VzLm3gl/v62Pal+u3rcqZDEZ2ajf/TX/39YO/5cLSytWvZwNkzh155sWvzjgcfvreKCmHbJrfzTHznuz868NLzlBAjEL7htj1333Gb4NxHKGHizxp3fqv2pr9f43xqbTHqC9hOsbOutj4cLTA7bZqm49QG/eGg4adSmvn0QuHt1w5+/5vfe/Tvvnnmlbcd0wz6A7U1Da0r1jasXW9UVRmBoOELEMOHDB9ouoOILaTFZdFhBcspmHbBcvKmnTdt03QchzMm3WEnXDJ1RIUA6lUGSQCEAHEMpXGrJVq+vDp+sUYTlXRXylLJNsj2lrrJi9aVBVxZG7Orb6SJYaoVl/dULL8QP3oJv/OLx2o7lwxe7hsZ7K/58OdfTK6E8+9UruGQnDk2Je99/wOaPz2fODU00/fjH/30wfvuWnLrjbaE++oa2N1fKBTMZx79Wd/w6M9+8XTfhSt333/X5t07YzXVlGrq5GlMNGoY0epiXe22XVu1/MwsRHZ97JFNr5w40Bd35tfe+tJkxfsevrNx3wv+uHgygfoGx//pr7/y5X/+u/r2zu233vLL73xfM4Ib7rz3sxPz9rTv0pGTF3nykp37l6/9WyQWWbP9+lCs6uEPvf/C+QuXBgaXYvzB2tXm5Mmbd/tnouabQ7FwqCKPjeaq6sScNDDlVAaCvlBIx7hom/ZIFhD4dImydvHC+QvdExubDMNH9VAwVlnXZufz2alJEIKDKHUTgZAcXLIBvOYFhBEGj/AFUFMoMIAQILGkjDFCiAdPJQgECBGEOOfSnWSAVV68fIqXdIObRUBU+nusIrh7VVsq6xRwM0iDmuOIGoDJxq0rCwVxZmjmQv/FKgKDJ04e2ZDI20mYP3V0jOw171z+Jx957rX9A9PJqTjza/Tll9+4cP7yBx66f9Pm9cFwhDksOZe44/736s+/1Dc+crH/yvQ3v/fWi3tvuef29bt2VDU0CI44YxgjSpBPq6+t2kWtZCHttG2//b07L/5bfBd/318eP3q09fJvvnxfoMGcS/4SnpsJn7zQ/89f/uqffeWvq+sbb73/7l//8OcdXX92x8e/qF1MQGwN658eGxt/iox945/+84//VmvqXlbb3Pje++796n/8ZzcOBvVgvDhdExLxeTabzi04xZQpNi1fFjQMJz/bEItoAR9BAiTKWfrR6fRUYSZISAxrYnQwsPfVVVs3hgKx8ank/JUpYZoUEMG2kiN2j+xeLDYBUEllwIgAIInU8cCqLVqVnyDwptPLEsuuRCLUlCqXSnJ/PJMsSpUs5dopvdI0CUL3EdPmjlYjE72oOCTspJ2drFl785677vzD969cv6xO2CxQVx9u32SePLmp1bn5+u2X4syoqNm88v6xIbJm3YbVq1cGdTo0OPhf//2946fPabrPF/D5Q8FwKNxcX706ppm2gwzf1NTsT/77B//6p39z6PmXkOT+gF/TNEqophmEGKSiuVjUIbTynrtXhxeG7LPHHrz8/YfGfja9IAK3rXtkEzeYIwg6drbv+1//diGf6VyxYuOmdUfffCsdhqMHfvhG/1vTMF/rozt8dVeGpn/yne8lpoaZZJu2bexpa9sYbkYmv0ySs1OZ/Ue1eYtNpHKc2wRsbBhZKZhjE0wwCOD8zKyTYroBeDadGEjGL0yNvfj0Cz/+5ve//e2f/Md3fv3CG5dyKBZo7JBGqGDZtm1b6uQD4fYXKWmpblkp1RgE4jI7yJ1dqcoZsBdkKEoACYkAkJBScPe8RE+WpYrOsoYX9zdRUk23nR4hTHQpANk5VpjLjx0rzA5zR/povqG9bl2jFiqkP3bz8hucwV3oyJ++Z9UnPvOJ2++6MQSkmO/hxubx2WxDZWRNY01dQCsWCt/45ndee+mVscHhdGJeCFlZEfyLB6K3NRTi2ZzQfZrPNzg48o2v/fsvv/Etu5DzB4KUUoQJ1gNUDzASEqiybeWGpbmz6Lufu7ny1N1fXFmfGjWzPe1NpEoD03RyOPDci6++/NivCMUbdm1Pz06nmHA2d3z13K/v7f3Ve1Mv//7UvqxTOHbizMzYeCQSrW6o3rB65aHU8KMXXvgbc+a5E+s+0PDZLf46jkTBsY5duHBpaKBos3TRIZgEdNQfLzzTO245VkU4GvGHuBCJfGE0sXCpr7//9NHcQp8ZSjY0+tdu3dCwYiX2B4QAQAQBRnKxTEBFHF71rar7QxKwRFhI5I5pZLJUZu11QHhmV3gHrytFBelSQsKdc7wo0ZKCuiBZCoQQ0XRhJVihUMg48xM8ma+X+bkAnya6L+w37lhbe/P2zq919/7zPczEfmQEqztWdqxf39Hj3HNrcHVLuL214cH7b1zbFAnpetFiP/rJz/Y99dzUlaH+S5cimr39xu57G6xkMjE0O2sEQ12dXTZHTz72mx9+7V/tQt4fCFFNF4gKiQXohRwrsMo19TWdjcYgbeD62s7rGnxvv1xM2AvZZKJ1Z3znH6WE/tijv5geGgxXVSOMDr22t7JrdVNDRVGafeZCgmWDmmBW8Z23DxmGEQyF2lvrL0XtfzBPT2umP9zY3da+Pe/HmPg0I2VxizEEQDHxGT6fzxjjkbQFmWzS5qw6XFETjgQM3WYsUcxn7AKjbMLIvDPbK4vFpoaWmtYOMHRFhoN7YIvbZO81FpXMqKodk5yLUj6Uesi01Opw1Wnc0h05RABJcMuIpJASvKEoJUEu/kiQIB1bOmaCYsfBDSxESc8DRHDpr7yYrjubHGuorC2mU8H6luUrltgXJ9789Y/rlm1taG3ackvdyu23FpObic/IJdPHjp/RJs5oCBfzuXO9F+anpyZm5u/aGIRCfTpDhETZQjZtmo5pEkIEhueee0XTjd/5q780/CHJbLOYFUICijmRHXd9aGFbe/sxPHfs9P7tza2nju97ejI859i6My9QKhyJxGeGD+59+c6HP1hdVXHqjde6Gt5LdE3wAgborvRHfcAK5szpg3PjYzV1tfHZeM4salRHujY9OQHOQJNFIyFfopBL5fMUg5RYgmAOc6LVdSuWd+e1gcFLC+mFhqq6ZY0tuWJmfGE+WTTzdhHSXIzjQW5elKipMhBEmlVbn52ZUgAHPOmU+viElMSN/t3Jf0IILtx+FTdBBmVwxpPiYl8KSOGe1ISx9Ir2AEDNShFCqHqWUj8iAuk4LJMvVre2MGYGtaCI1OPUOwkegPbdFW3ZJ7//diGVu+nO+bb1qzes64n2j3zrG/9qVDY1tNTX1VRsvOkm3fAjPh8KhyoDRjFTsJltOvb07DRI0tVeB8XMQlFITQcpiqZJ1EQODkTTn336hWgs+vDvf94XCDlWYX52MmzbFXUttZt2VDTVfvetx9/+zvFbqwo/PxnICKiKhLS5C2LfmSqd4wCZH7hoF9INLQ29h8yCI0ORqIAMgBb1aW2VRIaxYxVe/Z9/Q5XNh/cf0IlWtO0sM0cCOagJ1I/67ELB4Tzk8wU0qoGTzhULpjVTiBSo0VLfNDU1nitk0rq/o6a6pb6qNhaL58y+mYlcLqNPJ3jemXSKHVt76ro3+kOVY8zJzcwQjKQEJNySAYzUWHWpaPWyFAkCjIUQQiBvxKIUZU0TXsOgK1uBgChsi4R75qMXf4J7JqsiHcrCGQk4nbWEk+EYB6tq+s6/HalOzs3JvuHX/FHKGjseOz6SMXOfau8M10e6umq7a8mvX31zY6wYXRKyGmTVjR/hNXU7dl03MDBUEDSRy1dEK2t8WjyeCOhF4PZ8QTKrYAQDs/ML3K9rIDFCEoEtnJ987wcA4uE/+L1AuLKQTb399JOtqzYt37n1jDM3NzicnMx9/bKpaVgIhhGlBNX48brmYIRYdb4s0fTG7p6utgYJdPmmLS8du1xAocmk1VYdbli6uqZzzeDBl8++dpCYOEj9gGjesYbBdOojTUY44uAFKYNUi2qoYFtZITsRHZlI7x88EjJwc2MLk1wCSTHWEoo0+PTuUGVbftn5SxdmZqfjqUyCttdf90CgsyuRK1iCm7m8k00rMCulRBgkSCylEEhg6R59AVJwNWXchapYqZpS2UWA6spdukcDlBXhI+nNQFHzPbk6aMxFYRzryB/B0Xq9tr1gNNs243YOGcFQrMIKL0mfOzzz8o9mxy4+9Pufr1i55uXe9IG9h4XlSEQium9Ps/nIbdV3vOfmltZ6gnEwEmlcvvqOu+/btOMGADSfTNiFAmbmOweGj70zdJH5AxpCdrFoFdKFTNEqFM18NpfJm4W0XfjOt7798s8e9fkD4WiFj/LvfvlvBvt7x2Temk/5EWqNkLW1/taIz7SdhWxOAqmJ0PoqXxSn2dwIZOeWrVtjzU00di9b0lDjC/gm8+LSjFWzeueKux5efsPdkYDhIwgJQQnSMJl3ijPIzkQpx1KntCLgX1Pr66iLYAIFIZc3GIX09OTshMVFXW1TV2e3LxDOWhwhAtjZtn7tg/c+cPee29rbus/PZk70jiwMjRYvn4kiUt3ZLTTDsbnNmMMF55ILqY7Z447kTHImuXA7G0C6Q4RLNIKqLsOlI9JLUchVXZ4gpXBPKUQIuEQYE6ERrPux7sd6kPjDmj9EfUGiB4iuF/C4hqaTw5fsRMGsfw8Nte1eOqUt1x899sZH//yPvv4nf/HEq+dXbV7d0NFdzSZvfn9bdOnNxOeXxJGUEOyLVddW+FBlrJJzZ2Z2am1t56ollYnZuf9+Q885rC2qT6dyOUuYQCoCGCPkMJMCaAhrwPf94Fvbd2wMNdStWNp5mmTP731GfuZDfC7tFIpN9ZGldf6Uxeb755jE83lWtJymSj2oFayB/e3v+VL98o3nX3wiHo93NNVNFObTEp+ayPT0Dq6/XWvbsK3uuV+nc/GswDZHOsEZzD5+8PsO4zkKUaTVUrm8PqL7tMHEZDyVDKghk7Y5NnJ5anosEKnQERnWyMraukCaVNY0dnT2tLc2r+jqPnjgwA9+8tNNddoWLRFavbtm+23Z5vT8lQHEBABICgQBByy5VHQ6AlAzUFzYgxEC7BVmcokxllhKsTiFRvWWYeK2lCIMLv8DGBGCNB/xBYkvTAMR6g9Tf4jofqr7ieGnmoY1DRMjb8uGquSRQ6+OHD55S3Xduvvfkznxk+oWsmVs/vibL9x0990v/uSHLz5z6OYtQxtvWB1rW4H9FRKELCZFbgZCzaGKCmbnKv1418YPTY321Ufn7rl3KxI5Jmgxk/nV630Z2rakU3/x1QsVwJuievOK+uowQcyq8IuaoC36nvF1/kl1a/fuXRum5sZJJrdWOleQM52226u1ppjWEDGG044t8EJOLKcoEAlpPE6AC+KvX7ZibvjZ9WtXXxzei32V08Xs/lf33XnvXdGQf+mSepFPsSQqFkWAGpqG47Lo84ebSAEJXoHo4Ex22pZn5nJX0szw5yjWbGRJQJzLXCqpXFEuk2qN1Jk8mTUzK1ZXtPd0CLv48r75sxcvrdnY2rlsqaittTAUU+nM9BTC6mQkJLGQGHMuCQbhzvVCgNQZ8CCFpOVED5JClh1SrWJYIjkgSSQhWAPNoIaf+MLUH6GBCA1ENCNAfQGq+4luYKphqhGiqcAWMLW1Zk6nl1235+LFSauQ8nfv1GEu2//mPTvb+L4zB0Zre1avf+346U3Lokt270EIY4oFMhAr2HMXQasGgjs3bDn7s6dv3/nVk87Zvv4vvf38b7beuKuuq0dWaQ/ft2rN7bdD6vWJvgvJadi6LLpqaayqEmsUY+6As6Bnj+JCIljd1HPdDc4Lv1hphXfddut/v330QFL2ThWu74l0VusTKYsJNpWmAEA1CsU5nhgxWjbFmrsr6msIjm9d1rD3/EwsVoGlSI4O0cpoZU1lW3MoZRUtiYH685aZNVmqkFjbFKjSIZ62h+eLxxfMhaJNkFXJSCwQioVjFHiFbY8W8jmEKdFSxaLgLFXMLaTPVoS72zqaWjrabtp1/fETmrHnrvpd9xYRYYTmunss03TSKeS2/7ljLRiTUk3pc42tgroSq+BGIuASuAA17lhwyRjj6gw/oqFAlFY26HVdodbV0Y4Nsc4N0fa10dbl0YbOSF1bqKohUFETCFf5QzGfP2z4AppmEKITjIUezkNVe3vNJ77wYH17M8c+3LjLhJjk1kO3L1lZEXcyiTwOnBnKW7msBAbAsWTIV0GcNE5ckMVcfccSHzYHBp+N1jTMi67zQ9nZqbiVmeOO3dro97FLr71y6OgAcoQQwmF21jazwPNIZhGS2JwUU4d9oVistb2uvoaN9jdvvW3L8oYoZvGsjGft2ogRoGA75mTSzuQZBk6BO7PnMdWNQLhl3VY2P7RmaWc1KRTSiUgsYmjUSc9pFDd1tnU2RfcsDe3u8jX4QRNmslgsIrmkOVARhMtZs8CZppLLBCqra7rqm26LRN8DZDXViR6QUiDJMtbMbO6diyOvvbLv5Uunz3PLbm1taWzuSAQriD/s8/nDkUhtc2tNWwc2fJwLLgUX3GbMLh0drfo6GZfcRacq3+nSOYK7Q6MQpUgPaL4QDUb1UIUvGNWDEeoPaL4QNXxUM4imE6qr82rd8Y6LLcNqDpEECQJwTquLFEcq65o5EMdJQ6A6tmSbtCYFtj5035KhiXND48XXj/RtXkZX7doGGINwAOnEqMD5YeYwo6Jz7arur3//25b2fLIwGgFfIm3anIcCKDmT/tYPDr14et5BoVh1VEjOkc4BW4UMRbahYc5tPvKysfROX2VD3cqNqaHT8rp7Vu66rvr4r+JO5ViCbWvVa4JkPMsTRWc+UeDVSUZ1c+iNyPoPaEYgVN8eq6mcHx9d19U0cWY0FNB05AgrqesCULShPh8IBmemZn2SrQji7qrA+tZwomi+Nl0YyRSoAiKAi2YxXchz2xpLL8zhaF/N5oK/Ljx/FNKDGhES5/PMOXX5fDqZ3LN129IlbcFgwAHBpUCU6IY/Gq2sbe0oZjLJkWHuOBK5h8djKTEqnWO9yLVSl4NFAFjDhoZ1PwlE9FBUD8b0QFTzhzR/UPf7NcNHNINSHVONYAKEIES8AW7YKwor8VEu+YtAWHpNIR8l1hz4aomTBlLHIVBMZiNNLUHDft/9cLx3Zigl3jlyuacLoVCIaj4pqbAjQHRdDPCpfasa7I2txjPnznDA4wJfjNfK3rtY5tX66qQv2l1bbXz6i59du3ndS//516fPXly6pK42iisqqyXFiMREdlrEL2nVK4NdqwvnjhSTs017Hl7zxEuX+4pz2SAV+bqAmC0Qm4ukKf2+oNQDxcxCYfxUaNnN1PCH6xuOH3jjykJVbU1de01IFhI6FShS4QNDR4A1HWG5iUE+k6+LaVOZwhO980NpO2AYjDE1U9a0rImpUUKNMQw8UJtyNCMMrS3VeXNqR66yL8qHjGKxkB+amYSjhykIopHaWBUgBAhTzfD5Q5WVtcW2TjOfy89MIc5LnbRclRiUCB8AkIIKXceaT/OF9FBMD8X0YIwGwpovoPmC1PBpukGorqZXY0QJxtIld7G3K9S4TdWFhqQKZVQqBgABCKyljdZAfpz4pDRzkF8QufHRU6dW1DbLQP3SVZFNqy+9dKDv/KRMF0M1NbWSCCw54hlZLGAzC5xX+4OfvK9uNmseH8tH/Vpt9Y4w3do/U3Xs1G8m0ZmccCKVlW0rVuz61B+9+b1/OXvuwvLuEKJaZXU18CwvzMHgq5HWHb7azlDdpDU/Hlmyadvtd7w68Hja8hs+smN51cxZK10Utc31weZaIQTTAvMX9pHqbnBskHZChBKWAKoHfZQSjpwUBYGwTTAwK2P4KcOivj60bzDz+pVkxnT8ulYZimJMMoWcADCLBSSBS1nLjNut0Ev53orK4hf21PTWN4y+lpMIuuqaJuZn0unE+Hz8xLnzDc21KwwqVHcKAqJpuj9QUVNfbM3ZxUJxYYECVy1mEiPJZTn9gwBopH2dEYzowYgWCGu+gO7zU91HNUOdH62OH1bnLHgy8pq+S5lP97hlbwqR9Mqu3a5EUfA15wo1oXzcSqV94XBFY3vL5t1crwV/ne43t+9c99bxoYmENT7LK1b0kIAPWBo5OSgmCUjkWJKZzQ3kzz+05Pxzs2MT+QuXX+zvnd68/JGqqt/lFw5O5Z790l985R+kc8Oddxj+v3vzv786MHgcOLNzRcyyhubEfKeDO7JaRZ3e1OkwEwB37Ly15zevnJoXkZr69cvqYo1WImuv6/InM0wIR4oMXphPzX+ZhOq4mUd6KIgLg7Ozw2F7V9yPwOaCgUCIGJI5rJDL5J3X+5JvjKakBB0hzsVCNmPoBpdCCEaw1DSjuq5514Jxi1VxUUwNLcwWMtadu5u+Ec+PXnZurFtdHYucvHDSstl4fBYHiEaw4JwJIaREGGu64Q9FK+qaCrmsU7SsfJZgcGfvgZTS848ISQBa27OeGn7N8FFNJ1Sjmo4xxkRDCABhN6npHail6PWSXS1xtF6yRl1dIrfr152cIYmeDKxE2QtmLqcbBRSqq2pbwjkXwhF6dPXGNS3NB68Mjp+6OL3seqppEYIpED9oIWTEiLkAglkyhkT0ev3VJ6bipzOZsHaRFQ9sWvbZnWtv6EmuPTf5+j9++XsS4Ia77sg+9OnX/+Py4JiZnM9VhFEsqqHZkcrZy762bXq0zo6PCisfbl9RVd8UzU/X11aatqzzZWIinZySmhHwBfyEACEiP32Jy37GdbuQEEIHQJl0Mj91GQOzTK5pAdBjCzOTCzn22mDxwqwdoLoqziHUBwgzCYYeyOeTUkiL2+G0ud1qsU2+iVQPz+Uf3Z/9uMFDFQ0OH0xmE+uXrUzNTYxOzyaL+VA2W0xnTMuSlEoJQgAmVNd9oUhFdWOrWcgnRofBshS/gzACwKU8NEJAo7XN7pGnRFMH1ILXfyKvkVvZBKNrCN4ywbqO2DtxDQAAhCj6GrNWNlxTZJABKy2LSTBnsZ0Qwa6Gusiq1V2XhiaO9C3cnuFGfQ2SeWynCPEBt4BQJNl0ZMf3U5uztc29TS8mU+ctK9sm+jn+j2hVnGh7QuE7Rw73/uEX/uyLA4MNAQcIOEJKGsSRMKmu4iF/fm7E37WLBCrMude4ZNJfE4lFdvekZXZiLqMzIbAkhqEbgaAvHApGKogR4HZOcG4VrJrwzMVZEvAF26uwY5lIo1UNrZYFQ31D8znx3Cj0xU2KIKAZVeGI5vc7QCRANBrxG8Ghkb74/BwAFpaVs1NR8O3m0RM0cGTMhNdRNFYdC8yMT09sXrmmu62DF/JjmdzMzMyRw++0dPeEYxXCtYQSU6L7/OFYTVVj0S4UM9PjUnAi3SnxyMuFACDqC4QxQlB2/JvHvF81pe/atMlv+0vJJ0vVQ+ieBIsAAGGUD7VqiWM6SgiCQTDBOeQTglOK4fbrWve+HZ2cyyyM9Ve1L0WBSqLFBMtjHEA0DHYyLKbq6Jy959YNK66LnXzn/Ds/MmFAp6Y/ejhR7H3zhDaZOJyxMl//1/+6dXl0SVM0ZISDlVG9Isr9oZyVnZ+4EnNsgXFy8Ezu7V9go2JDbcrfFgRqaKFKQDSdyApWCITCeiAQjFYBoShSgTC2i8XN23Tpm84kM+uaabCuLhjSfQhmRgezFrwyATaJVIVFJpdi3EEY1i1dGqyuRVT3B0MOlz6dmIWjeQZjyP52cKxKYoOjS6RApTY+Gc9kTACcsQtZp9jY2Dw7MTpXyCXyhZnxyWIubwTD7jnXAoTEWNN1fyBSWWs2FqyiaSbjGAQC7B4y5C6zpJiSkhg8grZ0jPq1B2lfI8tr5O1VW7uwFhYPywIAyfRQOrRKm3k+YDCJNexrAOqXQlr5+KqOwN/87i2Xz/cFedyZ7tVa1qBgFUKGQBrCPtAqY7z4ydbTF/u0vti69ttvnxnpXUgOOgylEoXWjtA2e2JovmBzTWiagzWkh2iQcqIXbcFYmrIMGjppFZJ2dgHZaV2jEgqxqgowooQaQnIrXxhP0KHL83fdEgtXBThzCEGaHkbAtcqanvrumoaRFx57aXjCvq4rGI2Gz53qP9ifPjZVGEk7rXX+5pq6EbtoM5bMZhaSidaeHiNShSh1hOi0e2YmBkenp03LGdf0aaoRjTJHEIACt9bW83RRO1LQzvLMHZVtkXBITktHCIGw4JIxzt1uaJUOQ1jTjUAoWtNgm/kFx+T5THkBtCKO6KIYPMm8WymvLv26SqjvfsFVL5Nu9acUAktggdr5ypsq4q8G6TzXI4AQ0vxasAYR4+Ybu3dtXVmYG5KFGWc+IK0MMkLAHYT9SPdz7hgEtp7/4eiT3xjYcQ8unJ1Oi9Gk0bSuTRqRtStjoxPZF4+NOpwVmBSAOBC7WCCchevqQ6E2vz/AsgtccASc+MNcIkB+IaRdzGq+ICDUe+7iyRGruXnu+qooEEMPGAhTAALERw2/xdC5actkfJdjnTg5+aPDCzNpNJ9xiBSpTLoqEquOVU4vxDkXY+OjHV1dtdEYpQZGWk19U2dHTyIxz03GuQTgwUDQIVq+kHNQccdqO+jzn3hh4fDM5OrKmvpYjBKEMOVYYxJMx3ajd3fqJRKAqeELhCOx2iZmmqmpYW4WsFQHn0vOhXu67jWqdo3YSqPZ/jcdfbdcS8rq1mZLQO5gK+5E2xbQbdbUvog1QwK2NBFQP5BaANCj9TRUK7klkcbycZGbk1ZCEg3RANYDYASLlU1LV+baduu9l9PTlrg8ld8mZDBWy6z8xhVNZ64sjMynJZeIM8E0pEO0ui5W36yB7fMHMdW0cA2JNUtHczIJVpzDEkCqmWgoy1CC8/OjCxuX+pGTk9k5EqxEgBhzEKZDvZNECzrCfOXkxJMnxqazPOzzaRhzAXnTnE8n62JViUxSCLGQSo0NDVY1Nuv+AKYkEAl1LF05PNKfnZymhBBqMNuUCBu6j/EcwnZLXSDsFLMz8eHWxHKNGgRjRBxCuQDbUUQQqMPI3BnjmFDdF4hUxupsXiwkJ0esQp5LaTHmOMy2GH23bH6rzMqN8P/9Ynn14PFrLoQkF9GWtP5gcXhvLNXvC/qBczCzQP1ADRRqxcQA3Uf9nZLZ5lzejp/HUuBYm4w0OTdsa735dgcFuttPXx4ezxWtQsEMVdUV4iN1FVpXrX88kQsSi+cWuNRjXe21bT2I51kh5WiUBqqEbfsaltkmzhf781MD1BeguqYbhmPbAESAGJy3Lcsx0mmhGXw+AY5jA8k5ZPDybJ7R8ax45+0xyRmSPGcWQE0fBDGXTkQCwUgovJBKMYyujAx29PSEKqo0TQPAlfX1zU0tU7NxTBCo+eusiBBlDIYn7SDYoogawepmyLLyYR1hzMaGh8dGJlq6OyRxpzwJl2lXBx1R6gsEY1WF6qa5hcTs9JxZLDqM2w6zS2dfv1v/3i2w/83klp5dzKNd/RrpnaetBhiB4NIIpev2TJwvNCaHqis0wAxRS0pMGefUh4guAZNApVHdRTBxMpMciJOdY4xzScFXt6qn/rVD2pV568pkZlU+rrGkhoUfWcAc26YE6TUNDdUN9VhYhfikU0g6jAvhSISNpnUynSLJTCJRWMhnlrRHKWIGIat7GvqSUBWhBmdmXs5mzZHpTH/cHEiYcznhMJm0GCAcpBpoOpNSqiOsMSYYO0KMzi/4iEowkmw2Ozo82NDZ7SMhRGgwEu7oWjp45UomX4wGAlnbsUwHpENw+PDpyshQbYUoWkLy+EIhE++pCs6bYmJ4aO+Tj9597/1VS5Zzr2cE1AxEdVQV0akR9EdrfJWNxbGpqcSM4zhMABfcawh8F5T938T8f4v8t73EjXZK5+kghCRjqUxmb59dXLDfv6OxOWwVp4ZfeLVvWXd0y66NeiAkOWP5WUSD3CwIMOwiE3bWLmZBWJEWY/OKaE1lZH587tz5gZs2NgY00yCytSboJwsDcWd5c6yypsHJZybGh4vZVCCg67VhQAQRLKnhSAmhGguFTwyMdzVVgJCaoW3uEJqoChB4szf91lB2KOHkbWFziQA0jVJCDJ9PcC6BGwRrCNtcMs4QCIywTghHOMc4EE1gzKUcGx9fnVwIVVSqQ6iaOjt7urvPXuiN+P0CgDsUS2iIbq/ROouJyyus0AWSmp4aqgswYWg2wtFAIDp6hh/VeE29FYmp8ZglcRJCCUKg6b5wNFLTGGlom4zP54tzBBDBmKoxYgDwruNQrpLo/yG5a2IbKDO5SiORdzqp0lOMMSsWR0dHRuemly1Zx7t3FnVnaOhXvzr8TsvF2bqqcMuypcCymCCihaQkUgoigQZCWqgK6T5AuCroLG+tvDi2kEwnZnoPEOojvnBTbbA6EhxP5CcWCm3jE3YhaRczoVAgEA4LEgJMkZRcyEIuy4kRq2vf2JomFhN5FE/yyXkzkedP9M2PJk0hgWpGSNctyZEAQoBxLrCm+8NmMQec18Uihs8nEWKWlcokbYlBckP324zajokQmU+lpsbGqppbqc+vaTRaU9PT0zM4eIWArI1GTMsOYLS6lUzOX5YLk58X3a+TsUE2y7g2k7Ed4rth5561ei5ETMe2HDWECAAQxkSdN8Q4IRQT6veHK6sbWrsL+dzMsATL1Kk6v1MuVsmXhPdbg87FupOyZ8sONHqXykq3jMhx7GKxaFuW7jN8RJuPzyWs4patmzctW15dGXYYC6295673ETJz9uK5IS5JXWOFRhiGJNAgon4QDAC4yIKJEQiq6/fctHQqXbxzU1VXmxOPm1q0oqazpepk+spCzhY4FZ9izAwGfQiRQiqN56Y4swRgwRlnDGFKJFT6xOWJ7Nk5O57HoXAVIv4CS+kYKEEBg7TVN5oIdN2Ymo3PJBYkd4QQfn+kWMwkC/m1rR1Llyx3rFzvuVNTyVzGsiynoFEfwQHLNi3bGhgZ7Vi+mvqCVNMMv6+xo31ZR8fU7FxzZWxhIV4f9C3vCIQiRbEg/VlagYmu4ZzNLcvWSbC2uyfW1cZt0/SHBC9NxgMkJMISE8ASJMVUo+FItLGlRceiIkBz0+NYMAout+rlt9y5ULJchCVRvRv9lgQvpcSKklfo2iNtEWAhWbFQnJudTaQTldFYQDfyjtnZ1lIfrQgHA7lEYnDg8lQm9eCH3tvIts9e3JtOZbJ5hoQJTk7X84RqwrYAsAQAjKjh0/zRtV3Rb/3FzVKAw6UMzBbzOWSn17b4wapc3xHShUm1ANV9jsO5zfzSxyVitsmKBQJoYmrqqcMXp+JmwhRz2ULEb2yvD9bV1PsMcv7KFdOyQbDm+pr2VWspNXrPnjp86nSBI8vKOZgG/GHLKpw6fyq5MNXd1mlounBMyZnk3HYyRDP8RoAJ/fLIWOjw0XXr1zS1dfojAX802tXRMTuXaKiqDOrdhrAqKgKxuuoD+eKX+i7NW/OrpeFHIkRkbawC+X2mP+z4AlIIJCRXh564hy0KDBhLIRGSmGiGL1YR0wkEdZwI+sxUnEIZxkGqpV4NUL3a3v5vpvVaJmExRJEgJAIQUlimmZmJj/X1FYXjR8RXY1RVVfo0nXAxNTZ29uzZ8xcuoZB/45o1LZXR7iXNBDFOAo6gBVNODo1O9V2urIk6rAiOGQj4ZCrnC1iaP0eoBoRajrTTScd0smZyeYXVvSGCMC7mqeDcsZAUlIEvn0Qrc1nM7X173zp88MiliZmpmfmgz6gJhoIGJ5j4AqHKxsaKqop8NjswNSk5N81cdVUsUFGtEW4WClemF+YScSksx3T8/qhl40vDI8NjowghR4DEVMMEEYokR7yoaQG/cBK9x18YGdy5adv2pWt4jGqaJjn3BX2rN+5JzwwHQkYqkx2fHe/NTVPgzTns84uqqmj39psrG5uYFG7tqwTh1tlKKQEhxAUHwCAwgMAYU58RQDENg6Gh9LRG32VUr4VC13jK8ojlGk0tl7RLyktpW2ZiIXFlcHBmeqa2rjYajVVUVWsU29ncwOCVC/39yXS2uaE1Fgk5NjcZwibTUZZojs/nD9XWFLLV+48H73nfF0ONHYW5ifmzr2rByOz0bOryxaZlS8EqFjK5Qk4rZIvFTDZn4WzB0g2f1KqidY0Hzl4eXchML2R33rX8TsFPHT/xnZ89kU2mBUiCEBNC17SqSLRQNB0hwlVVoaDfwFweQVPxeCGX9weMWENtKBp0TDNz4IRdzK3vWTIxMzE4NRXyVwqtumgWJMYa0Th3bGZpCEcCYYOSyXTixqbof61r/PN3xl578ZUtx5L6/WsXEguZbBIBC0WChFVZuWx6ok8z53XgPt2vU6pporKxuaZrKQR8XAg3q4m83KOaV+PWC0nEuQRgKhTVDT0YCYt6EA69WmASkFfY9y5L+3/ra6lBsIy7lyClbVlj4+MX+/tChl7d3FBZW21QLZ1Y6B/oH5uaDPsjXTXNgIAbVOq6A4gLLJwssnPADS5FQ41WFxFj/b3re9aFKhtFIR2oqg20moV0rnnnIyhSk0vN24WcKGSHTh/KDFzBQWlU1DIaGJnPDM+Zs0nTofqNe24khJy5cGlhIWkYuuEzmGUxh02lUz5N54LPJxd8fl9lU1PUgGIm4+QKrFAQZi4ciUA00rm0o/dc78IcWbZm9c5bb7p44u2FkcGB2Vw6FMW+MOfccayClbPM/Fw2jUFGfMYCBH49mswifR6ZL/gmt2RrUHp2VWOsrbnOTkwkhs7buRRkE52V/pQIWQ4PBfyhMI02deNASCBEEBZIDR6Wi5wpAilcHleVyAokGEJAMDF8OkRDkl91ypFKObtV9G7O5SqAUxJVyV9eXWB9laTVHxljpmn6NaNr6ZK2jg5d0xMLicHx0WQ2Wx+KBamRZ7b06Q2xmM54kdEAijCrCFgghDhKYRL0k+Clvc90dHeHl2zmgOdHL1e2rfcFgkTDdW1LnMbWYj6bz2UiDW3L80nOgDEBINLxuOakzpy6MJPNP/a975jzs/Gxcb/hb2xq2n3bLe/sPzQ+NGAxXrAyCOT0QjKTSDd2dUW7lqzjdnxkdGZuPjs7ZehU8/v1zo51K5ZMjo1jYTWvWLHk/9f1X8F2XleaILjWdr87/nqLC28IeopepAwlpTKlNJ2ZXSYrJ6u7ciImOqKiZjpqzHPPy0R0zNN0dHRUTPfMRHWZrLRSZspLpCR6AgRAeI/r7bnH/nabNQ//uReUKhsRJMCLS+Ccs/699jKfee6Z/urdD/7+r97/+LO9YZI6sI4iv4JEST6caTz93OQrt9t/+//Y6cbWSiFv9ffmV+9OhDBbbcFwZ+X2g53VB5VAVmt+oxJ6A1boQb3aqs9UvbmToAIEKA1tCTiiwxKrM+rZSzYnOSqzMAFnmgiYECr0KvSr4SSA0QLk19NsqYLxD85ygYCVAprwuTuXyrUKAYEQcvHMqXPnz9Ur9UE83I8HHuPzUaM/HDzY2oiHyUS9vp/q+3eHm9O1l8bUhKg61zN5zEkTJrV6tbub5Xc/lr7HdBqv3a6OHTOFaS/fjmZPKj+q1lq1eittTSbDbp7GpQqhX2v89j//r156/VZ3b5+4CGwe7Tx6Zqa2Ndh//8ffJ23r1UquyZEzVu/147/70Q+TIn7ta1+bOX322Rcffv+7P9xZW0FnvSAQjebpJ05c+fRy2tlVEirjY42pqckjx06f/96FDz5a3o07w7STxMQZ+pFQcq/or+7vjQUi8FQ3idtDs9/tLB2fa+9sXP/o5/1E56TCWrVAcWNnsLybtjwhJYUzS2xszjGOQMjQOVdaXTtnSsrRCLqOZUjJgQNgQMgcGAbABfOCx+E8oJIdjBX+s9T6nzcwv3qwEX4tbwM4cjrLHNDswlytWrXoDLiK9FRYGQL0drd2ltf77e4jcDFYJ/nTT51dqMzXwvEAGek+Gc24PTbLHt5ln37/z57PHtbmz6w+urm9dc+1B71H48OT2yKqSc/3/CAIIz+IsjROk36RZUYXKqxUZ44YrV2Rmd6e3b3/6usv9ViICC7Lr9xc+ckHHxaWgAngeH9tc/0//rlO49/7J//kld/9g5v3VjdWVvPeXnN2Hnh9Zmnx6ML8oLPPilRyJpX05pe+8Af/9ZNf/s3+7tbDD9793g9+cb+fFabY6Vzb6t5gaKfrVSY962yuC23M5sb29vYGkmk2a7MzE8pnK9v99U6apMl0EHk+ipnjENaAlaRbQsYYMOcc5xxGwEsAInAHgGfnENE5C8AcECFKLsU/kDnx14/mYSB/7TtHYX6cWQ+jT4DgrIv7w42dXYPUCHxijJApLo0ntZFmJx2u762srW/3u/XpifPnzj154thEtZLprJMFfrWGQC7vki1aoRV8770r+3NTF+uRKeLuzp1HYW384YfveL6qLp7xGq3KzKnCj6RSUnqs2hAi0XlmjHbOWmOMViSwOtb0JyZPP/sVhm6wtRL380+Vr10+Nj6RWlje2My1+8EPfnxkZuKLX/riC6+8+rf/8d93N1dnzj4jlB9UovGqv/Fwr+js0NwCSsk5F74vp+eDZpO1V2fezv2pRp95q3vtvHDV8alT8+NJf3e7J5phpYj7W1lfef7sZHV+fgLAdDq9YZyRtYhQD8PW0hk2sUBc8MOWEMABMQalmyqQswTgSk1NgLIhHKE+AB0BQ4v46xuVg8vyH9iufD7B/kp0P1fi4khXl4AgT5LVtbUb9+9N1KsSkUuFABkRaT3Y3Ll29cbFW9esL770ylsvPv3k3HhLZ8nmztby/p6pUSOQoao5m0I+4ByfOsp//pHc2u6fTjafeab5fm7e+WSjiivjbDt87hVdj7Lh83LqvInGddQUUjHGhZCMMWst45Jx7sBNnH5SRHUvCgGhNjE5VvdanmhUgq9++fXtAv/dn/2nuodYuD//t/9h/daVxSNPaJI7K6undC5lVVbqkedMPCh6e5TGTgoBChHAGkWOinQ88l966hwfm3q01nn70+vjzTGZrTepf7KCjdCN+SwIq82xeqXCgEM8iLMk1dpqIk/5zel5f/EJ50UH/nCjtTF7PKIBhljaOx5wjQgJyTk3cpFH65xD/JWNykGoAP6BYvYfCGp5ax72NofpGhGLvNjf79y4efvBnTvNE6dAKd/zhoPB2urK7p1H1+7fvb+zfea5p199/tmjM7NIZmtzfW17yzlX9wJt5c6wP9ewXDWJ0OlibLw63vDTONZZVm2KmbFwKtJ39rz5zb0lvVUNz4r+bZZvaG/SzbzomvOjfgqgNCNmIK0Xjp97CZAz6RFZHkTN8VrIXJ7G8fZypw8hgy8cm0PS8SD+6btX8eJDbtzqw+W0uyeUz6Sq1CvNSEUC8s07EI9pzpPdZbB5VGlu3b2rizzfu5z3on6b5Xm6urnSqGZV3z/WhEZNSOkLLwx84aw2WWLyrNQilsKbaE5MHH3SRGNgHUPDOUPOS4PqEtU+MjQqP2M2spACGHmKESFaIlZKHv+qf+f/1qX4D87ly8kgHpz70XMAhIjkbJrEqyvr1z67lg/6+ExQqdbAuq3Nre9/7wcbqxuLT5z8p1/6w9NHFpWg9tbmrbt39vv96fr4VLPJGFkOA6+VuNUINcgqMOPX+XhD6WyQJwO/vzPs7p9fwPpYZbCvwRbcl9KPwKaYLOftRpb1SUbAJEqPybDURUehGOMIAIw5Y62jSq3iKdzvZ3tbGw/XumRNWKt+9auvb9699uhHFx922xz5zVt3X776iXpeUp6G1fD08Yl865beeD+IAqvNYPORs2xidj7e3uRYTDeD2KTrg34+NN3CyfHmWMOTUkgpHApHOs+dYOhswRnzlK8UDyueNz5rVHWrO1CF9X3fj0LP9xjHgwUUHAhCI0Ow9BhG6ciRLVnZUA7+LB1wVH4tkdLjP+YfaFdgxM9/HN/D67b8RqP1/t7+9es3NlfXTp0/ferJJ6ph2O/3rl64eOfe3Ze//Oa3v/LWRLOR9ju3rl29/NnVItFzY5M+F51+P+l3JhcXvNZSWjAetxVnKEIWqbHxGm23AcCZJBT9nqZnjoaf9jv5YICOkHsoFJrMS5Zt75ZRE2AS65yuLVE0Q0ELkY8oyWSs0XkSg81qoewNqSaKiNmK5919sPzkM2dOvvb1l3eK/idXMmtx0Lvzw78ert5/tLr14Nq1uVDX+PbckelIoNZ7QVPG3Rzi+0fn1Hi9WanLdD/PHC+cQwa+J4JAMsEQGFlrtUFyxC2QUUIBlwUwGXrIxMONze3+MIzC5vjYzOx0vdlQvoclM3p0okYDHjyEwZYdCAE4R4yVg108TLafDxiNsi3CASn0Vw7lgWHWoeFn+ZtwqClOlMbxo0crt27eDCvBG19988zSMaOLh/fu3r1370vf/Ppvf/Xr9Wp1f3vto/ffv3DxUmBVo17LBba7nfWHD4eueGVuDrgcUEQxq/KYhxXkqtqobGygQ0miUq8PNpY7jAbayZ3VztjCQyw6QsrSulA4J80+ygC4pPSWTh6krpZnKUVzhWNFb9MVMQ+nWN574czYjLc7Fy6nLQ8oBHT71348jY+en863Z5v9OD8dDIdr9967de/Ovmacz8wzj0mkRPl+beykS3PBbxFTSoSqCmlOqdZ9jRYxsy41BjgQOaN1nmsgLF2hlOcJ6RstO5ZQBp1er7u9zRH8MFw6fS6qhJVqFejXUuUosgwZgQU4kIo+WCETUYn9Eodx+rXs+jm69sHXAeDAvuEQRfufR9oUer/dvXvvQXdn+8U3X33yzFnJ2Mrm2tULn84eXfj6V7/WqNfWlh+89847lz682OnEE1OTE8ePTNYa6aBbnRk/Oze/ODVphr3OxtbOZmepvhc0Ck9VAMAJZUAZ8AvnGyJPUsHU3QfdqemrY3PjUnEuJaoKCoFmCLbCvAYxqUDD8B60lzPNqdCUdBkijyYiJs4exaWoRvleNcTFVoFgmi2usjsLY80/+ZKXpWy419/eSrNUfOnFL8yMh/nOTSYRmbOmINKERoR1TZ4xzrlC68I6Mm60enCOmDXWWWNGHkOMCz8IlO8jF51hvp9hpovdTidNY4bOmHGji9LG6vADRwQ7Eu1CRLD2sUjM48ARlNIjo9P5D7aSZbPxeAx0+ESMxC/Afa50evw0EGVZtrm9s7m6qhBnpielde3drYvvvbu5s/lbb/7BdKvV2dv74J13fvyDn/ngj83PHj9xfGlikvlsbGLh6fFWJYwGvc7tG1euXf6svbv620+IU0tpR3fWVrtAmBkVsaBgIVNM1av+uPzkSnJ8vVutM1DgvAhyjZy4CJlKKW6DCPUwzfbu6yLXFLgiYQCOBc4OrdXobKUhinQsM3Z2KkTMuF8EtWq9NTblC5O09wMpqGAqkhUR+txr1KTMyGpb5HkSkzUWuC2GVluT5Saz4Fzdd6FSlSicqAXG2jLVMQZcyrBWCwKfSZ6n9v5e0kmonaZpOgTnVBCNj09N1puBlOSc0QUyxjknRIBRQXQ4UcdRTz9y4AU40EH4NSvzXzmLOKIqHPSaj2Gbo29grDzpn5/WOufiJGl39inTofI6u+3Vu3d3tjcvvvfh3Imjc61m3OvcuHz50keXRKP++htvHpkYJ3KiXmk16y1PuXz44PbNTz+9fO3ajc29dpzrIo3+KehKgDOVouC8PzANjCyrqWoIXiUMbUpYALPIHWnKM4AcIDcsRB4gOGvSpD/UvW7hpCFUQQCkHQIZRyiUAEKMxia8sG/SXJs8ak2qsApgC8sIVFhvTh8JvCDv9j9yeTWqB6GSzGVUgGVgtWaWbDrMc11ocoYJwZcm/E7uJqpeMyQqxS8ZY1z6UTUIA8YQnF1rJw/appe5fpoCgZAyjKJqpcIYi9PMdrqyz4VSQRh4voecQWnC+9hbAQ4vQToYLyDjVJolf37P9Wsn9XNfL62Y8SDSDhHQETrrsJwuAgDpPE+T2Glbr1SyYf/BzTs8STfX1x+urC0dO1Ls7l1dfvS9v//xkPF//s/++NTiwnZ7G6NwdnIqYNjbWrnwwYdv//LDh5s7jSAMvTDOeh89ikmIP3xx6vRZruNuQa63uzfoDmr1BqpartuBYF61RsEksRTMEKkgU5isD4TOMGcLR6KwaFlgisyYIZPIJViTB7Ua0jBN+1wIRONMx1MVhmSLARUWeGgsupyAV4JKJgQ3uu/JxJchENmssEWKKIy1WmsCRC4YCgEsqsJiIw984oIhU9wLuFLKCzhnyAiB2r3s4nJvd2D7hXHOMSG4UMhlqovN3v5ekQtkkvFavTo9NdMcb3lBUIKi8cC6ajQVGEVuFJfSpExYa0tnlrKqOYTzAHz+coTPfbHUfkNODnVqi8IBOhVwLqjIYGeLbyyLbscWthenwzh2w6zdacfDdGdza2N5/er9tct3Hz55/uxMpdZNY2+8tTR7RAnW21q7/Mknf/PDd3b72dOnzp8en7h+9+Z+PDyzMH/u2WdwcSbHfcXvBDTQ+aDI41rLSxK9tpf5Pgb1JosmmbCUd8HlaFIuY7IGdG41OO24zxAMCqETgxaQZaaXGCrSImNSJt3dojfY3SMUdmo69isKrcbGmeHYb7z/nX97ZrxXqWSVaiT1EGEITnMRGmsIOFeeLhLgChgH4mA4oeWcAp9LKZhQTPkyjIQXcrBkMg6QxPmnj/oPO3ZYWG0tMmRcMiZ0YXY77Z2478ihttLB1Nw85zKqRMrzSo5CObf9HOkSD6pWJAQkQnAiTlMphBClyw4gALKR1Ax8vrz6XIULhMgYd4bpHEyqSTgmEBD7vcry9fjaxeHKYL1rMkSW6ZjiLM+cc/eW19f3+y8ePbf81Obqgzvf/f73nn/rtVdPvhRFlW57587Vaz/6xUckK9989QsVyR+sr6z2utVa/ezpU2eWFnVevPew09nun5vInljwl442CSAeDM4vevLUfG1iDGQInkQZOZNym6BNiRgjQmtZkckitc6SQy06WZw4OxCBSLKBRQxU4IwxBLv71OkV6IqJac0FDLa2375x6ZdXB+xY98yphierUhFSACp0pYWNqBITxC0BGgPGMVtS2REZJ64kSIVSMSEZgCsSRlonxZ1H3YuPkk7Oc8dGukyERKR14XqZds7ZAgrNGIRRaIoCyrVH6ZtRKq0d7LHLnw4zLiESkej0BoGnPK/U/mdccITSWBCISgmwssRCh4cVFgICMAaMAXKGHBknQGEs7e2sfXbp+kDOLz13emr+wfqjtN8xlriQWzvt737wi2994Y0GF9e7vdWttd8NKnl/sLqycu+z6+999EFUm3zh9OIwHrx75dJ2e/fs0rGTZ05PT05ce7B+5epna5tb/ST7WQC/82T9N56tBdUAuXhuUnpRzQmPcSIgJkLOFBVgCZEJRIXARAjOGUFAxqG/I/KUyJYv1jpA4SEAr6Rzpt2Ki8qYIk+QkKanr33y7lZSdLBOqpW5yDChPMWUj5wBEw6l0ZlhoUNBAJactmAZWLSadCBEibljYEjnaIs8SS+vDD5ezbcTMiWLB/HQ14iMdWTJarKaiKLq+Nj4ZCWKuBTluAY+V/H+Ssr8/J2IKNqdbuB7gef5vvKU9FR5VDkypo1Js1RrzRGV9KSUnPPS8wwAHZPgVYBJBORcAnKq1HbHjn7EZm521l6YLnjIAaw2mhBqUb0wevn6nf+w2Qatwdka4MaNW2+/+/7V6ze1pfOnzhxpNK/fufvx1SvDXn9yYuLM088++eSZvNu7fvnyw5X1NM/Bub2u+18/bm8N9e+8PDszWUWX6WwAIgHrgeCAEhCcyZ3NkQiFR1wQcOC+IyLmBJszfo5A1hTcERAjJhljqoaz1RmTJ86Uwju2wvUXjnuFzOcXJ0S1YtARkwACUDFkgIqYVyB3wjcOLZBxppSi1GZARIIRZ8SRXJEwa4rc3N0yd3shelUZJDrN+CiW5MiARXCWnCFnOedRrTV/5OSRxeONZlMoBQClugzBiJBZrsgOY3mYNBFBJHFWFEWiMj/1fF/5nvQ9TymPMRzqeLXX6Q/ihvCm6s1apeoxXmqmOkAHwKQHXB4OeV0YZbNHWidfOHM3fnDrpg5ZkcRG25zspBd+yVesiH+0vd5BLoS4ff/Rxm57d68btZrf/s3fPDI2/t7HH//y4ieD/uDYsWMvPf/8wszU2sPlC5cu3r510+hCIhgkzjGqNfvVE1vyhMxTnqxI2+Wsp4KA+xHnggmJyMkBkAGmS5/LMh9Za8BaR66k8wCiA146DiNw4gH4Hlhb+tPkQj93zj97SgZRRAIZByGAcW45s4TGgCNjLXcOHaG22hAah9boIjdKIueMnLVZYh0VVN0Yij2rT81U2xntrqwlaUqEQA6RnLPkHDgLCFKF9bHJ+cWjS0ePz8zPRbVquWb+XLuIUNLbR9XpQaFThoBQWGuttVrbPCuSVHi+CgM/CLWnMMv2d/Yf3NvrHq8sNoKKIzgEcNJoM45wOIRHIGQ8qjw1NT/Gpn68/+BeHhsiQ+ArT+fx884t9ns3ATuKAbnBMBkMkqDV/O3f+90nl5beee+9X3z0YZJm55975q3XXqspdfnq1ctXP9vd3eHOSY6EUGk2n3vy3GvPPjM/Nd4fDj68fWd1vZiuRGfGo0k7CPKhkCikYtIHYACaGUQBhAwQnHPOaGsMWWutNtoAl4BIgA6RnCEaxdoSGe0KjSS80JckQHpKSo4IzjmjtbVgHJB1zpFz5AiNsdYaUxitNWMQKAZWO2MSKzNv1obzlrk664ZK5rHxlXDOMACPceEotTojJ4Ss1Fvjk3Mzc0fm5+fGp6Yq9QoX3CEcxKwsaN3j5DpKtjgqZwAJncBS+d84Y5zVRmutC0OgfXCVfPu422KoG4r7ypNcMsZKMDYccK4P9BEASs1UsD1R7LTAgBSO52DPnT07U2ncuXfrk/2dnoNEAidAIrIGlHrtrS+9+PQzn1377L33P9DOfeO3v/XVV18pBoPv/eSnly5dzJOUIzqGmmhhZuq//PY3Th1byNP04fLDoSFoTR2dOdoKQxS0P1gXw7sN26+AcZRbB85axgvkKTCJQgIwcFYbTdY6Y7TOAS1yckySQ2udteRKCW4Aa50z1qEDzgT3iGyRG2sNOGe10dYRMGddSdkjQmMcEFijszixRcqR9WJ4uK93dLU+5sYnskoURc0x35MisFN7g+12X1lTQ8ZJK6mCIKw0J6Zn56dn5scnJ2vNuh8FTDACR5YYcgBHpcnfKGyEVKKAShQslB1L2cJy65Csc5aAyGiDCCZ3nGW+jWUQVKJ5UZ2KKpFS8kBm/LBWPgjlgVAfatum/H4rywqQmZybmH7lqedMlt98eO9HBO9H/r5x0vfqrXFr7Oz5M1/74pv94eD9Dz7qDeJv/v7v/e43vt7b2/3Oz3/5ycVLNs85F0DOOtLGyjCQiO99fOHjKzcHXP2T//IfvfjEE4g03N/ZXl1d6bG9zbos8ifGi4WWFp5wZE1REKSEggkPGEdER0jO2cI4S5Y0cgABRpOxDggdIgBzREVeOEsgEJ3TaWKsIUfkbDnj1A6MI2cckXW2dJknJDJZlg0GeW5j7X3W5jf2ck355F6y2N4+sbAwN79Qa7WqIBe79sFmwpMsFKCka1UDNT7Rmpkfm5yoNxt+JeJKImOWCEu8ASvLpgMJy9Gk9vHWxNHhfAGFkJyXw0XuiMg5Z7XJExNDoQSX/kTNnxHVpvI9LtjhWvsw5eIBRBrAgTXcuckKLk4zKuBodWFh6SQ4ff3BvX6va5DtEalK+OZvfOP8yTM7/e4TTz9ZCyo/+vFPHt15cPTcqd/62teI6Ac/e/vCJxetNowLImKIxpqxyclzx869d+nOxzevtqZn3/rmN88983QYRsNOe3t948JHF2/ce7TT7adZ/gOen5mAV86MnZmrSq6BjANjjSUUyBgw7qw9uGnIZKnDXDtpHCIwS0SOHJF1hMiZI1sU1llnrXPkLBhjHZEt4VTInLNkiQCsod6w2OqkOwPoFn5ig71EG4NEJo37Xcj2uB2vV+TMdBTWxxuxH7ZyE7NQNpt+dbJZm5psTEwEtQr3JGMcoDTVZQdK/ORGoLyDOhbKryOVshWHWrdAQkphrUUCx9CVgnzOFYXrIDdeNQqjSEUetwILILIk6HMuAQd5FgEBHADDelU0j6kJQ9d9EdTnwtr4ja3dTtLnnDnGOLmFY0d/462vBYHfSAezrbHLV69+/P4HhtOLLzzv0uztjz7++L1PTFYwhuCIiAxRc2LqjRdfnTsyn+143z7/xMsvvzy/OA8A3fbuw2vX3n3nFx9eud4bDMlqa+1AqFxOws7cjlZKb455+UTFRvWGF1Y4WnK6nLxZV5B1Re6MLQpH7uAaElwIxoGMcdpq7RwV2loL1qLWxjogYMaSIdCWhrmLCxfntNHP1/tFJ3UOZCCl4IVxBpACzloKKlDk/d3O9srE/FxUa4RVFdUCQOS1UE7Vm9PjtfFWUImEEq5U17NAiOgcIGcMHLFSyB8RAUdk9gMQHh4YVgERMASBiJxzIALHAIicI4ZEPM3RIYoA627oFUNjQ81qJCJk6rGl3K+WyUJIr1oJ2FxFn6/aR/sad1l+fHF+qtJ6//KlLI5BWyHk5qNHQ7TjrbFH3fs//v4PN7c3v/G73372zBOfXrz0y5/9Uqd54AeOrDXaAs3OzZ0/enL25ImlM8eX3JmxmZl6q1Xk+d766vULF37xy3dv3bufZxlzDoScP3L0mbPnpmutze2tv710a3Nvs171X3vq9MvNE6q7295Z1nkSSPQEGWPIIWPoABnLBYNyklKQzos8y622UBhICzvMzFBTWrhYO+1YbqGf6cQ4bWhY2NQ448BYAkABjDOdEnDGAMFjMOZhy3N1Th4URX837+3BxIzv84mmqvgQVjxV82UtlIEPHC1BSR+mkbN8WWPS6CsMeWn6dgDeIYDSspyglBlGAhCIDJGAC4bOMucsAGG5cTEGXZE5ljqtnahZTzAeUMlPK2OIgKPRPAAyEpJE3dojnm9n6g3R3+yYjFgDGDVazfrUXL/Xv/Ho7n/8j38WNmtvPPvi2tbGrWvXz77wzNe++KWdnd2PP7lo8vz0yZPVRiNJ8/3u/tETSyenZm9vrPitmmRqZbBbB4wHw7s3brz3ztuXL1/a220z6wRgY3r6hedffOr4qWHc/+Dip5/dulU4e/rME8+cOz83MXl3f+/Cp5v3ltet0ZKBFCgQFUfJERAb1Wh+cmKsFjnn0lxr7dLCdofp3iDuJmmcF6mxzpChEqxTzmAOBjKI5XCHM1YWKY4cQ+YLHJM0rlxVuEjySAkF2hWx04UXiLmpVncw7LsiRZM4E4HjQGgKYTQjS8CAccc4cea4ZCSAYYlnL6frCMARHLJSxR1G4yVARFGy9rhAcgwduLJodUQOnKNhTh6gURxAMCUYMsEFQ3S/ykkqf2IICIJYjfwZv5WOYdzsJh/cvXnl7mojqMzMN3Y7Ok6HezuDYC98uxfvdPa9WvSNr33dGvOzd97eWH40NT7xzDNPnX7qvGVifWd3ohKura34YZjvdH/Z3j13+rQEvH75yl/85V/dun7d5RkScE+dO3/+N7761litceGzK2+/++7O7vb8wpE3X371+Pzc9t7euxc/unX37n6nA8YAUAZADoicJgiqlSfOnDt7+uRYo2m17nS73Z3OZm9vo93bH3TzLC2rWTxYAB5cXVjmOAIgZIjIEctRmhBSCikZNIRtSQo5BQJDj4dKKF96nBOQ8MNqo9bR2W63w4fOC8NaWBEEPI/toA3DHgdE5QsvcFFNB5FVIXBOCIIx5Fw5G5qMIxQqyIRHxEf2fwiIIBBH/AcuGCfmyIEjcGQtWmvTQrSJpaBCVYt4gDByqMMRVxNHkIfRmyVCQslUDT0AlHwaRWjj7c3NJKgK5N1et+FXhIVhnt1fXXZEX/7yt44vLn38ycd3rl63hc6ybJAMVSU4duz4CXvy4cpqPYuz3uDC8v2vfOVLp+YXr9+4/hd/+dfXPruK2nDGW3PTX3z1tZeee04X+u9++pP3Pv449INvfPXrz55/qtDFzz/5+PK1q+29PbSWIwIHIuQElpFj4vTx41/+4htPPXHOD7x+r7f6cG2n3bux/Gh7ZztLY3CGE/CR4DbQ44a75I0wKhuEEjBFyIRQUkrGlaAKc1VuPXAcQDEWSiYF+mGkwsgpD6wHyoud2+53VDyYDSNTCXIt0/19vfMIOptYFJxL7kdsbBbG5ky1SVIBkBAiEuBnfT/eJRXQ2LyOWq4UtwRgJbjkc5vnkuHLy8a6jLa1mGjnGLcFYuFQOLROCI6lf+fnQH/lTwyBeUxwKaWygjc0PjFfuzpZv7a224v7RBSpoFFrsDRO08SvR88/9XQcDy9euJD0B1Lw3qB39dIVw8AJOHfyzMmjiwG53c7+F59+4ukTJ2/euf3dv/n72zfvgCYehc+/+OI3vvylucnJG7fvfPeHP3r06NG506ffeu2L9Wr1yq0bH168sLW+bo1mI3Wscu0A1jmvVnnxpZe//uWvLBxZsM60d3bv3n3w8aef3X60PBwMyeQM6NDL8mBXf3g8P9/Aj+oTxpkUQnHwsQgZ1AR5aDmC5NxTQkkuPakqNV5pOBU5zQ3wJNNS61mlF/h+NbfDodre6fTWN3R/i/KUO2JMyN19MT6A2gRJCYie4HMsr2S7Nt0zzUkb1MmvoRRQrkQYIqAoe6nHa04qy2PiB8JR1pI2juc6FZkQgpVQe3ZYM9OBOJwrIQsaKGeOcQeCKx+XZqO3np7NdfZoJyl0AUDj1bon5EZe+MpThb159eqDu/e0KQCks25jY73d3V9dX/vW7//ekbm53BUvPP1UFEaXPvvsJz/66er9ZUXcmxr/9u//3ldffUUivf/eh3/+3b/Pnf393/ndF544t7mz8xff/96t2zd1knAstevKPRE6Qgs0ubjwja9/7bWXX642GnE8XHu0/MmFSx9furqxs+Os5QCci9IFqjx8ow0jHcT2c6CaUefHGBfSF6zKjc+sx1CCE0CSoy+Y4sg5qiAMG+MsqOXE+okeDGKdJEu+O1ezM7Cetrd3evJRW+/1kjxzpIEZZM7wtM0HFr0dyxgAhQwTWVgWNxVX1VkJsoQW4Gi7ifwQXHJ4Rsszx5ARkRCsnBM7cs6YvNAyLwTngnFEcSAAhda4PNPGailQedyAiQ2qTHgpE8irrerzZ6d9t//+nfz6umgnxWZnzzmX5HEtMZ3bv0z6wxDyHMEa4xgDgLSTuTv3th6sdNa3usnwxJFjn3x04eqnV3Y3d8DYqFn/7T/+R9/+2tezdPjuO7/4T3/3g0qz9aff/tbC1ORHly//4Kc/21xdRSJENlLkGc2sgTg/++S5b33zG+fPP4ECdra2r1+78cGFT2/evTccDBmAYJyzUcCohJuW16wjAAuHfQKNaFylmIiQ0hMs5NZnzmOkmJMcQs4iKULFlUAupay2VGOK/Kgbp2vbnf32Lsa9Fssjkwy72XoP7rflZh9ibYxz4DgnJogxgyoZUppm1hHZvjWZgkFVzi8sTdVm6zJUgByRAXIGDIjzz8GmSwn4snPH0X86BOeQO4NAztmiyHlxYBBa3qKWYDg0G1v9pEiaDTHWipQvjPMHWSUciCaQ8FR1fPyZs5MLlb1Pm/pnt93ddifTdtzHl+foXLDsN8VRWf3prfSzzdTYshRzJ0+daoWVv3/7p2PNlp/DL372Tmd3V1tTFMXR2RMvPvEEA3vtypW/+fvvN5qtP/2n/5Sj+86Pf/zeBx8N9ruMiXKw4fAAHOWI+d7rr7/yrd/4xtzCXJany7cffPDhxQ8vXdlrt9E4NTJ+xlLh7hA0DAc9AJQLXUQAtMYgjtSBBWMex4iZEMljpDj5DCPJQskjyXzFlGRMBao2IaotYGI46A92l3FrTXW2Byy9l+jU2tUe9VJnLEdnkRwQAQIh1CXMSItod4j2cp1pvUs8q9ewMlWrjtWUj5wzRM6Ac+ScCc4EHvw4xHQdrqoZQ0LGODpmiAjJGV3kuRBCMMFLDIzRJo715m7ei4ee8sfHKjU/AoaJEzwugGesFoqo5k/Mz6tBq7VxdMJ9fBe2h/LEtPfy6frMlC8Fzo41jkz4f3+F/eJ+3EtM2Kg//8LzwzR58OB+7YRc1Q82t9bzNCnHwqsry9/5y79qNOrvf/LJ8oOHrz3/4oM7t3958eObN26Rtpwzj3MHoO3Iy4cc+PXaW1/78re+/rX6WGN/d+/SpSvvvPfRnfsPizTl5RD6czCcUX9ejkMRlFAEZA9tMckxhoILBsQYBAwj4QJOPiPFqCx8AoGBQF+i4oAM0Yt41OJhDZBh0q+0V8TOw8EwXTcmR2aIZ0YQMsbYAXaLgByCC5ydBxrjru2xu+S2GPBa0Jierk1M+dUqU5IJzjkTgnPBhOCCMXEIqCyHuOXE6OA6BABkHBgK5ywyBHC6jKgUnpCcIefc8+XshD83BuPjfi0MQ99HdIqcG7SF6kIUotdg0TjypUa1/uxEb2mh2+tlUSWotyqSE5gcJCzOef84bIyF9J3PBhNHl04cPfrehx8Oe72PL3/CGNNpNtrPIia9/vf/9u+AoTUWAS9++sknVy6kaYqWkCERSi6qftBJs6Rwzrmo0fzt3/32W1/6ovLVozsP3nnv/Xc/vri/20YiwR7bgMMBmHW0TkAKg3CsVvOY2O13O3F/5AcGxBgoDj6SxyHg5DOnGChGkqHk4AlQAkV5XCQKIYQXsbCG0ktzY+IhDHtUxFqbTqILVEJ6THiCCUckOfnEgGxhXW5sz5od1FWwMxxrNZE3PDbW8ubnw9nZSrWqlJRSSMGVFJwzIRhn7Ndlog42XiPGS7lLQ6QStocIzhmtc10oqyyQkII166ri1zirSJ9HkkuTuyxmWcx7beb3TKVCvMG4Qr+FYVXVTMvf89vrSIXySod1Sya2BK3x4NvPVyZDvV6rFYPeyvKKM6bQpR03P3hdQIjOWrAlGNHlWVzSbsoBJmjKMI88n5xz1gaN5u/+/u++9cXXclNcePfiz9/78NbtO1ma8lJBi0b1/AHYHKicp3O2MDt7enahP+g/3FxPipwBjkggDBSDSFDE0eNOAEgGHieByBkKxhRnUjAhUEnm+UJ5Pgsrwg8tsEGhY8cLWc+jIrMxmlQQShVUZdAi7qxBcjUy0rl9svvSFQxWHMtzOOHh0SkYP4o0PVZMzutKkylfKCEVV0JIwaXgXHDOUBzWQaNjeph0HhOJRu8ZgJAcIjirdZHnmeSMCcE8n/m+zwAYGT/r+0U/29/JttYgRaVCVxRYdIEp5A5FCMB46FQ2oGyXgUUmUAihBOqcXBxW8PWn6u1kffnOD9zufZ9jYdkhcOlxO3Tg9HLY1z+mYQBkeb6h246siKrf/J1vf/2NL25sb/74Zz//8OKnvXaXEUnGD8q4x4iNEofjrGWCv/zC82+++NKDhw8+uX2122kzQMnR4xhyiAQEHAQ6yVEgcCCJJFj5dCBnyBA4ohLM90UUheRXXFABIS2gYRKjZrRwmo/NT+zuZ3u7cZpw5FPgz+ZUGDckp2yhTNFQMD3Go4qXpyLtUl6gBzzyQltpYtTgQchLj2gllRRCcFFmXc4/R2o4lKE+BMsffFil9dHIhmx0ieaFFqJgDD0uRimLaavSnt++ZjZXkg7ZcKFSYYLnpGPOC844M1gkqctSISLyc3AJWYeATHjIhC0y54zw+DiLA7z7x0/qz2r+lU33oGu6mXPWlujycnTpiKy1ZW0CcEAiPlCLs9YA42+8/sXfeO2Vuw/u/+V3/vb69ZtOG8XFYZ+BMAKPU7m0doRAlshX3vnjx8eblR/9/EHSa9cEBAJDhTXJQomKkSgfewKOJEatTGnMgIKBZMiZk5IFURA0mjmrWRlpx4AYKlEdmwirdZNrEWwlwMz+HhXWFKZnTUFFm6wDQo4VX0xE4kTF87jf64BLKOhL3K9RpQJVpSqKKymVVEoIIZQsLew5ZweVLR1gcg9wXaPPaLQVPSj3yzaGyDmrdZEVgnOOjnjqrDGFb7XKMpljis1+s2K9hooYw11WPEK0QgTCpmLvs72dPTF+JKhGZHJ0RVlpA5NMAKAmR+Cs55ulaTtThS8sskdteXULbuzZrYFNjEPggEBGY/lifgVj+Pi0McGqUl2+eOlvf/aTe3fucQLOGTlT3oxApdB5WcvTwcoJBENusk8uvrf18Ea69fBYlUUSQik8CZKB4ijKTpvIjaRiyNGBCwYC5yA4eRKDUAW1qqw0u0Wtl3s6Bc8DJ2VQVcZaPUytVJrI5to6u2t1l2nHIAfPOg5AKTIvxcjxxcxNFNoTupEIueqTKbDmWAtRSuUpKbhSQpank3Fkh33ngZbC4fCDPS4ToBx1jay0ywW4NUbnuuCMY65pP2uzZKvlLFkRi7F0bB55IJXnmHMZR7PnqEsopMu8+GF/dTcB69fOo6ygi0fO6Y4O/Hk4Y5Lz3EHGpR5rsFaNn5llu325si8edNz6gPZi6GSQaLKOwDkHDg6vCUQgYODIuJ/+/B1C6Pf7gogxBo4sGoDSRhEAGAJyBhwZBxCMQo5VBRUFXnd5OFxd9Kwfcs5QchQceWlSgcCBnIO8oLwgCwyg1PAGzjDwWOjzKPQq9ZpfrRv0V3pwb5DW48G0CVtjMow8iayb99b3dra3VrPBAIVEghxLuT3FARDRIqymRTbIIiyOeV2lUiJMt61Tc8KS4hylKEshJbkoj6bgeMi+RjgEFoxupHLE/ngXNqorS3NHKrELmnPgPIc0Klaj9JO6aSuxmMDx1GswirK+0cx6BquFjMCYIskNkAh5AAItoCQuEBRzKenYudyZDJy1BomQMSGUj4i60M7pCudRhAvT7IWU9RNqD2GnTxsDttzD3dj2NaSaCkcHFoej15gkMZGTjB9ufhkgY8gRJQPFQSEEwoUcFINAYigxUswTKDkwIEQmOXBEZMAYKI6E5awWraG+Bc1YKTZRmmUGHqtV/TAKokoUVGpCyCTO13aTi7sY9Omc9J+qREGEgJDrojfodva3KM+4CgQXnCtEBc4gckDmCAvifYJ9yavCT53RIEStNjbZnG5EIvKkp5QSQoqyuOWcl42jOGShjDLtY+j7AWqkHFoeoj1H1ymRtUbnxMhncb3YrbjNUCagTZHbvg4GQ9xY6XeL/elxWqjJOaVC7KdAWXTSzIMMm4jkmA/CcwU5GoLNkApyjkwBwIErLhVjHJi21jrjDvR5SXquWaOlSZfnNEhcN8V2KtoJ9jIaFhTnLjHOOFZYlluyltxBgyEZSoY+B49RICCSGCgUjEkGHIkzkBw9hYwhA1fqpAnOEIEYYww8zgDJaNCFMQQIZeEjGDkA8iSvVoN6s+5XKkp5iFgkw8GATK4azGOUkynIGQbIhAzDaKw5Vq01uzvrNus7oRiTyAQXijGBnAOgc5Qyf4NaXWNXXd6V4Xhz4bUjJ2YnWyLyPU9KJYXkUsgSHT0K52P+wq+Dcg/jSqOg0miODUjAGDjrsYTyTjfZSTr3ISFbfX6Mcr+3Zbdv3nzUubnc5+F+8OLc1NRMIjxhHkrXxrDG2RmkjJwmjJwIyFmSOUMBGLtk6KxBBEQN4CxZcNoWhqgcZHFEQuYQ0JOCCyeVbTW9RQe5dtqgtSwrXJxZYzEvMM6csVRud4lIlrr3o2fW+RKV4kRIZLHcCGLJY2clxoqcw4NLVXDOELS2xlpjXWHAEXpKEjAmUAnhh15Ur4fVmlQeGZMnA6fzLI+qlehso+FVGmOtqOJLzkBKPj7WPHPqDDl3987V9saKKRIGGjjn1lR5mKGOyRAgE5VVO1bwypoQWnnt1sxLszO8XlG+Jz1R4twPwlnejY+HfOWCYPRmf40feLCqfWyhi0SS2wk1EOnqx2u3f/bh3Uf65IY//5tj2b+ga3M7dz96dFRreexEa34yqDRaIBpF7HAYC0q4p8iANQWxzMhAqhpwgc6BGBTpqs67QpXDU2RgjEmSXm4M8yvEFJQuhkJKzjjjFtABSgFcSO0cWcAa+bpg1lprXZ6jsaM2zBEwUc4mEZCsdZwzxhmgsNqQM45KJiUjZICMARhtSmkJJAtAxkKaF4V2xgAQKaWkH3LJpRRCCaG8UjDc6sLkiSkS7oAz0ahVGtVWVG9VmtUoEIIjZxhWgoXFGc+T9WrjQePW9vqDfq9NxkwYnCmwo2AFdA6gKenIuMMj7VdgZuLEianF6UYU+corL04uBJeiHA1xZPg4nA7oc6iTQ9bRYXsNCOC0sc4iEIITCMKzkcrrtDvhHt26u/fR7gR4m2+P5d+s7zbj25kesuZiUG8INAiWgpphS2ATGtyUECPjQAg6calzfsBEQETOoHYqy/JAoFANhgiaKd/4vk1jE3djFLkKfO6hkD6XilkHyFwJx7KGSlNnRC4QGRdSCGmsgXI/a8v1n2CeEojkrAPGABki0wUZbYjQWrBkyzTKkBnJnUGjdW4KY7FwQjvmGGOKhYEQfqTCGjIOAI4sINmisMYgOeZ0wAUKlAX3PCkqQbUWBFEghSwhP8jQC7zZ+el6rTY9PbG2sri68mjQ3q3FuYwdQkbIBQvmGa+w4UajOZiNjp0cf+tEY2E8DKPA81RZAUkpBWNSSETGEQFcOSOkkcXfAaFzFNTSDYUAAaw1VuuiyJ01CM6TTDiXeSZwIJ2p8fx4dVlLt7XS/Q/YmcTwSjVPar3x4V5zN/SiQEa+V5tA8YQhgN4VYWMmq8h9MKmJExGMMSZMkhfD3FkEURWVKYao8z4Ck0HhnEVOhMYLmQoirhQAAjnOAYDAFOgMOAJ0zpEz2hh3WKgjAFiHBFJyJaUUDgGIESBDLpABp6JwhSMSjDsHgITSY4gaQJPR2hAwxyRwz5MKOedCMCmFCrkIiiwfDvrGZFxw30dP+gyRGYfkrENthXHoIZOCS8Y4Y5wxZOiMKXTBEOv1SiU60oyi8Wq9vbOTdXppZ28YJzFrLWDlmxktklubrW0eq8wcCU6MB9VK4PueklIKUcpgCy4444yBcIbFHUFEjKBEcdJo0EWHG7NyuO+cM9rkWa7T1OgcyBkpwKNdsrGrrPYnT5/K/vlCAdmN/99P85/etRUujNWMdW4aapCYnJ4FAOb53FsARK2Hdv+Ssl0MpxkP0fRsssdtld0v9FaPNa3wWyKaQqkg7ZMDy3Ydc35diaCuwjHhhcC4K4YIDpmHhhlnkDuO6IisMc7kzlgABuhKQiQieBJ9D6QkhhkAAhMoJZc+E0KKQjCwjjHkxlpHQAwtcg7MgmGkuBTEfMECxxVXSgjJhECUrjBx1k3jvmToB34l8JVSOkuLIiOjO6n3MIeCILAOyXG0DC0ygUDOmiSNdZKBJWOh1x8wZifrlR7jhcKK5baYpFgeEeapQTIpg6uo0eUMSXGupFBKqIN6VnDGEBkZ1d+orn4oDouewyL2sMod5V5HRusiz4ssN1lOzjIoQY2sY7Fn6wUce+Fc67VjeyK5vroyuLOidnPwhhrSbL2TdMammfSVFwopfYGKRdmgPtj1bbolrRWVGSGqSCl2nVgO+dCDcQ+lcACIEmQkosmgpYW/x2SkKhPcryJXgODygPuZtcDyGBiXPODEnLNFGgsqaVHs0A9RBn4Q+r5kDApCh4DIfRY0VDTJBdPxXtLfNxqIwFhjiBmsOPIQODckcwIrGAmH0iFDzgBKb2mr86HJBgEzlaji+VKCNnGaJkmeFZkW94dy2YqGR5QPZaZ9byD9aQMKAaUUHpdx2n3w6NHK+kY973+hZhu+f7fwxo9GRxZbX4irH17UNx4MlyCdyofb++1rNFQBb9XC0PeYlByBIzIsLXM0xp3K6kfi5r8Th23TAYMFDsRMy3RFzpgiz7M0s1lGxgIRcSoZG1oDw7A5fSyS/VxECDsvhlurQv8wEwOLTBc5EPqBX6+rwOdCKplXKeEV0/dreZpiGgPfh2BCqjGoI53qe31mwgjI2bRHRQrOIDlVneR+E4XH/Dr3A+QcCJlfJ1cwbTAbWB4IqR2A0xkxRFk4C0xIwcv7UvnVZlCpCWaZSwEsIkcVieq8DFtgYzPwgYs8y4zlSJyhD1ghkNyhGyZOD3RmCp1bZMgEODJZQs4FnnTGeJQzxQQzpJMsozQpksxkzu+4egfrvqeqvJDFpj8cBqoJkU9+1THBuaxW6yYttLHrK3ebxfbpGa242FWtp2cWv3AK+kXsd/Cne8HpmbGv1y++xts7m0sX43iYJqeOL0yNtWqRL6Uoq1OrC3/zbvHZ983AiJJiCHDoT4WHXg9AQNaawhS5yZMsHw6KOCWynKEveOgxUpw1p7XXANfb6NtWe24h3fhaunfX8YsAgvP5xYXjZ85Um02pPM45IBrGjdfEySfBO2qSFUw3nNtzrkFBgx3zo+G4tQFwYdKOMxmQRS658BEYouJcMO6j9FCoEW1VGxRdTj4XKbPWSh+Fz7UmAMYVl5JxLryKX295YU0wizZBMoxL9Kq8MovCp6JLQNygUAWQZKCApCSFjplCu94g7e1nSW6cE56v/AoXLEejTQookUhyYgjgrM0pzd0whZ72B1DLIGoIz3GyeTfpDGPblYJEJYeAgCEhMMkrrcaxYyd7na7ahA3TjgfFDdtpLNPJ2UGR6sIeuVE7/aNG7SvzO2foyhvr+spy9mF/6/rtqYmx8VqjwgVHcjbPk8GA1u75D2/NHD16OBUapdxSDxdL5pm1VpuiKIzWOs131jdWl1f7SWYcSQ5Vn9ea9dq5yb4fWMbP6OzY+vrM3pgN0rqSi5X60sljr7/24hNnz4VRFRknIA3K4WQR+d4cqAlN3UW39gkN77gic6YQKmJ+3ZdNLoI8HWbdVZO1kUtUVQIAPUQAYMQoRHLEPUIBUpKxqLQA5pwD7iH3mNQEiEJx4QkhuFTSqwgvZGCQAYJlMhDRFAYNQO4QKc/B04iOAScQ3KAtDHOOmZyyPjOJxyD0lAp86UlkIpTM5IqB1bnOTMoIOOBQu+4QOrnXNYGzrO5M1cVbzmxglqs4qpIcDMPhqlyqwtgk+QEwrnz/6NEjtdDfW1tY2V3rP1hrrnWLdX3t3s6d9eRHdzwnsrc3/AvVaEmypWr7v/pio+/hT65s//zjwrgSY+3QWmeMzVJfFH/4bPJYbfqgpj3Y4Jblv9amKKyxCJCn2frq2upOe5Cn2hScQVCJvE3Wm302A/VktvVkZ7u1nrSF6npqaaL1yvknzh45GvpekWdMKkJFwB2rgh9I5QgAhE/d/by/o9N9a3asCpmUyOugWkK2PPRZPzBFG0BzHmhti7ivGAcxICZARcADQo+KzBSxLRJyzlkD1pDRRMTAIQJRBkSUE0pkaEAPOToupeAIJiYsR+l6NFC3moyj3Jp0aK0WjDcqSlIzzyxyJaQkRCLHJCOuyBmBgFYigTG8n8JOJjpFgCk2ktyPk0FBD0W+JfMaN3aLEjHUjT72tTv5BGuNR5XID/xKvdKoh4vzE8P94/7CzpHtnenj7b7/6NZqdybZm6tcvNqp/OWNzWPB9NSSfOV86Dy3001/eWmYxnZkwgrEyBVFfvJE9atPgoARuXdU0x6WQuSo3EKRdUgkpKrVmlEQoDW2KKxOOMNE59nln9q7l5lXXSPTSTeljsuVU9jd++z+HayHx8SSnw+rztRqTaZ84gjIkXMAQL/CJk8Kxs1wQw+XzXCXczJFwQstvJAxD6MZLn3BnRA+t844R8YURYLgUKYgAod+Puxngx1bpOVFj86aIgXnpB+woIoSBYE0wK3kpCHf42CkAuHqYAunM9JE3bbtdXRmizx1xjhgaJ0npBIR9708za3QUA77ELBUQmOIJAWXUiidm27ftTXvYeikiArj8vRhmi5jspFntjAbXDrnO5fp4YZHnutkjdmpU4sLk/Pzgd8MwqBeDafGm978XCXps6Av6cnjbPuk+mxs79PvDYJ7cXO4fXYhd/R0rxd29/ZMURREeCRi49I+GJi9zGijiyJN7NKBUwMeLqtHKkJA4Bw560pQNQpeqVdbrZZcWVMMvt2snwL7Tl7ccwkbphCXfA+XIwIgGZPt733w0XtjR2aee/J8YXVvb58D+pUaF7IcLyIieB5NzGB9TGWx6azq3dt55z709tigI/2ASR+YlCIiFYIfSkYCgKzVaa9IujbrE8uMw6TfywZ7zmjkgjMEkxk95Aw9jzxV84NASicFeIpzYLZwzBVSSCEEmcTle8ne9nB3N03JknDOMaF8v+pIFoVJ4izLtNEWgazRjqwUEiUnAucQgROhdtjPcTtjXRaxSjXkSoQ2FoN1qR/2ulpnHLHjnQi9J/fNXtveht12Kx580eFZdazrvYzBSR6OMeEJT/Iw0FDvo7Gkj6j+kfHG1K6rLa9/dJfNr1dhPfsR7H9U3X33vujHsODj/+loeq6W/cUD+f9+hGmudweNh/Di52DTnx/aEjjnjLWGyFKpxgFhrbKwuLixtU1r2dcbldeKgUnTLcEzhoIxhkDEnBstkZErYMIXvpCVewX/eGX3yV735GReqwR+GEjPF0IwximooA+iUmfVBjRmoX0y375r9m/xfodjjGCZCnlQ8ytWBb70KzzwBa+kuYx7m4wNc+2KPANUTHoMBbgCmQ0qE36lVmlNRc1JJSW4IZeeV51kzuS6ixDxygSTgXOJLbJ00M0zy1VDKZ+QETFrMUuLZBjrwjhiSBwsmcJoUxTccCGtc9qQcSrOoJNQ38o+1qhSj4JIeb5kQk0XY6tqZznv7GcALPDm54IXQxN34sEguf2Ppop/3EptvnVpPc9ER7MndGVW+QHzPOFx5EwhhH61WnHVRvp65eOjuDO4t3Fln/3tNbwPQSMTC6A9lSxWkqfnqR+bv1/lSa357Ctfmz3yBcEYM8YAQun1wA71NZ0z1lkLJTuCo3WBN3fsyEvGXnD2l53t9kBfMi5FRoiHFG/uCessQdStP51A8J3L+yvy+uVk9taamQyT3z/V+9IR1RxrRLWGH4ZSSsYQCZExYBXPC0RljDXm890lvXOnaN+DZJP6e8ZuiqAa1ptBpYmqOiwqm+usv63Hqjqoel444QceZ0wncZF2pKpW62NBva6iqh9GDB0Y4F4IXDpyqKpceChCXSQ2TdIcNFWYqqKqAoLRmc51GudpmjntnCVtjLVkLGW5LaxxBAR2WEA/w04atodBz0gR+NWxqBZFUS0KwtDzQ8F5pVHXzt1I4yTp9/TGllzPCqdNfr6m//hEOlmDC7vFve5qIFjFa3iyJf0AhQAukSEyQj+McbrHn6miaA4vX30q/Xi69ma48N9CWF1NPl59+D/1bv90Hac92Ldha3Z66omXvvzGF6cnp4SU0pWaGyO08OePKAEAZ1wgcQQHDqrR0bMnFYMLH3/4s26/Y5EheCNMp1NVb+rZ41zJ23eSHXMEoHHr0b27D/+OggmC6W30LiTstPWlnqjkPRlVqTpmg2jkrYWMGLAw9D1P1JpmfCnfO5Nt3y127sZbd017y293lbepQW30a+8/yJd32lNVemap8tQJj3PhIMuSHthChB7jQC6nAixmDpkQHHSiezEAQ1LOybSzl6d9k2bpIIuHvCiQ8sxYWyRpUbg8K4pcO0OFtmlh0oJyh9qBIZYTT0ilLugUwSCZHKRN58JIyqYwtbqoT1QrtaofBJzLamW20xnfaPu5/jDOH9y0f4cgE7d1riGbY0v3MfwPXXnbV0t5cDLB+YIEMI4HiB5CYixRFUPz3WaUn1hK1W6zB8/p6LyWciEpbnlP9NlHKqvyhjsx8coLR2ePHZ+dGjdAwg88a22h9agGGq03LTlHB/qM9vEwHkXkHz1z0lMyqtdvPri/2+2m2gpGEslamB6vHa/Xkkc3ezsfD1zN5l2Vb0h3zYnQqVZCwX2cmqJjk8O44cW7lfOdsVOs3vK8UAgJJd6GcSmkCCLRGPemjmV752D1Vn/9XtLbHvSG6JLAJIse7gp3fceu9bu9QXFuVlW83OO553ErIWeGjO+UMJJzrgSXzmprCuSeEL61Lo8HaZzqApLYxqm1DhGcNqS1K4zLM5OkRZzoNDe5w4SEFYEI6jyo56isFyq/OiUqE7ZZ5FVygR+I8SkzMcsr9TAMQ6EkEu/xcOHIkVPp7BbW0t51IfRYhRbZmDe/eGn6Kx8lrX9feRjObQatPMpTf2+Pc8aoFvmBRDLOWQJUwsgoCYVltbFoMUgynerVjHDJDJ5svKrPDhSvVbywEi36Fe77GrAfxyL0/SIvrLXWlU4so4AeKHM4IHLkGCNGgEjIkFeD+TMnGuNjx5aO3Lpz+/bKyn6/nzjbHCSvvXf5eE0ky53a0N2XlU0D2hRjJE5DJVeznV37bvZQDzpjc/3T6tG+v7c5k1aOnWzOzLOoipxZNxIEAM5lVGG+L2pNNbEUHdvL2ltJezvrbvN0/4nGcG4iX25nl7fin95NlreT52bFbNNWAkumY/JBoaRQ8sC4AkxhgED6EWOySPM0HhaFzQtIUpYZDsAJMDeUayiMS3I7iF0vIUhZYP24WcPGZHV2vj4+gZ4vPM8PQ+X7nHnAPM59pYQXoAq48oTgwtfWHxbdkPdnap2B6g3f8qsnFsP282OD35naPdV0/Sj5bnesOlX9v76Unw52h731rLvv3R0HMU0iSJ3f7cGQdPV4WJ2KPF8wzlXoo1SuQr0R+JAWiRxHyQEAMuK5Q0eOnBFhEOjCGGOd1ocSfqOjWEI13IGBB8MDtCsxX1VnJs40q3MLcycePrh1996j9TXf6MEubKwMAfjxVmtibGLd8dX93iuc/nfTrU5w8oON/Afba3/zyc0rt9wzY1Pj1blsZXdif3j0bDE5P89Db9fEJs8nRRgFEZcKkbEgCJSv6s3KzJEiTfNhPx10ikHXG/Za8XBqd/Dhvc0si/OqikVcJO0k6YVeIiVyIREZYEkgY1wpZQpCbXWByITkhSFARsSTApKC4gJjywz4GpUJFQ+9c1t8ftM8bAQ703MTx5cmpqe8KPCkOoBbSSEk44yzchDOShG8sXY8tdPfdeyOCXcJZsPxWSLMku5gdWZ29Th/sLN8Y/7Rmd+cnP2dNKwr3Q7WdUh2P1p5W9y+VonV2ftF8yFunnvBPfXSzMTchF+tofSAMcehYIwxIAdky+WeI0B0KAnAoQQSvu9rY/KisNZqa0s0OAMGjJfAYnpM3EZkI9ucMi3zIGjOz1bHWotHjmytPEp6cR9VVhSeyasVtdBqngBvvzN4wdv5wvQ9obZf7Kg372/99YPiJ225lrOjwbD34L66sfncjYvjx0/D4twtng7b7df98bNzxxqT01Gt7nk+cs4UopTMD1WtHuhpUxS6yE1RNLLs6ItJlmbcFZQnNNxj/a0s3kzTfZblAiwiSMk93yMuteNEBCCZlMZizlkisOfkEHgqpakH6IVRWA8qdT8IKyCf3DNT9wb+uKufna4tzdebTS/wR1uMA3AOMmQHfISSYckzB5mRfaoVeK7Te7hxY7d7ezC81q+uP3jCVYR7+97Wz2/rY2uZ2zuXBvLRETnxfBA049vs4Q/3ZBBVdGDMGInxmogilJ5lEkpcOIBGBwS5dcYhElpCArQjqB6CQxF4vtE6C/28KIwxbkTGQMYOmduPR0UHGKoDtzMiQi6iYNyfa4y3KC+0ccYYtIVAEoJbZAtzEy03ue83Jv3V+cne3BQ/Oi4nN4/eU7PoSdULX2D4dfPRuz+/8O+L6U6tFlD21HMtqK7m7Dg3R11lgqmqUnJkE8wEE0J6vl+qrDgL5Jy11lhyloxxReaSgU26Lh06naPJwOZW51ma5FlRGG0J0SkjvKLm2VYgZNQMoskgUmHkBaEXBoEf7OzDo63hQiMLTppKwz8+P+7Xq0p5XJY0CDz890FFcbBVJOgL+qy/fuPj9jKbfY7deUn8/C8GW72h/daLR557upbl9y/Y9s1e0Tc735+cD9jYn91/WWH1GXb1k631OKSzyXJI7cqJM7Nn57xWLRMBWKaQFJIrQcGA2pC1iAwLBEQ3UsxEtMSFktzz/MDLM98zxhqjwTlbTv4YA4bgDgfyQMAcAD8AKOABDZIY42HIQl85C9aSMSVjXUIpmBuuy+kkeLEZUDjZrk+nX6X5l5vzyg9tUSzFD07ufk9cfnjxbu1RXx5bwn/ycrS0YHJ6VJjdtS15absh/enxsWa1Vg39UCjJBGeMExcM6PPV+ONfOwe21HfIiyLP0yFLEkxyrgsHjAnBlCeUL5Qn/UB4SkjFueBCCCGGGXt7ufe3V9b+65ns5ZONsfnxxtSkF/jIGALjjEHJyEYEYFTKNT02IXKptW9v3/uPH/31sWr0r77YO3mif6oC7z048acTb7S6+Z2V5cUNs6DTddf9N+H6XoVtbM+c+pSfSvpqB17Uk1/pi6u63Xf9octIex6XCtEa0EiWnHEwMrh1jBwS0OGxI8YcgECb+Z7K/SDIizwvrDUlV5VGvF0c4XARCNhomV2Cvw6fTCjTr3OAjHEAJERyFp0DIuNcxnGoAqqO5fW673uOywnlTamAcY5AXjrfbi9UZnf+WRb0NXDex7HhAAdo9lixiqur7/7N8HYnnJ2dmp6Znpqfm5+fnZudbY6NqSBkvGxy4PNw+BK9UUL3iUg6Gxhbs9bZUtMLABmWSCHGSk4d46PtIRH/aF9/94HOt3ptP9l30ZjvS+Up6THGCDDO7WpPS3DTISpV/iHlLA3K+ZlleGzC+6PFjPf3ySAfx6+cpaSbbj/qBettd2X3zB6d4Xa531u5dDuVK8w+esH33urdaUq+HmY3Ws301Hx4aq5aDQOpSgE668ABWXJuhPIHVzrmEDEiYIwYA+cAQAz2lmvTpwLfK3SQFbkxxjjCkYh5yS0e1UcOAJxjDLDEkJcntvwoieEIGk4ACMgBwCESWUSWOyJtbJFbIutFKqgoKZGzEpJlwnpfnRMTp04AApLROiuGD9O9rL8J7c2Jm41/dPXRctJjd9p9tveT6L31KfHEubNvffUr584/GVVrDoCsJWMQkQmJokRBcUBW8jEEAqgDufrR04eEjxV5GJZ+MOjIDnrx5Tu7vevXJ9qXk4osiinJlSlwUBilUHlcm+J+u/vdh/mcgDem7akJv1KpKCkEs04XjlibMjEFf/QE17dw7SoIBeM1rLW2Plj/4cCEfn22Px02Pf+5En7OuQgqzXq1V31zPqr79YloanpqrCmiAKR0WMpUOBqlQgasvEbLeI4Y4Yd0GwAQW1d/FDRmfFXLVREGflFoYwzYEQUHRgIArBQTNOSYA8ZLOukITA2IxJDcQYE0ogVxcOU3kHHOGefSjIYxeAEo3xOSA8apvrDaVVScGfOUJ7nknHPhB+CioDqu60d52J/e2Vg4f+e5tT3meCePN83ta9uPPtXXT509d+L0OZ/Iab2xsnLn/j0kmp2dnZ6artXryg9GMLcyKx4ULQf55vF0+iBJIxHlWfLp5U8u/sV3qzceYbHz6b5PMg+8xkLlfNqHjGf1pfRIa/NNvPf2dvXfXhb6xHD+lGlXPR5U55VLhzvLSXhD0C9NrPnkm4NhvAL3FsX0ov2tl9xzu7tr8al284V6M3g1nHrZHyMpQEnuRZ7yqwpqHKeEElwapNyScW50GA/w6lBKz44eS+IcqER3I9LBexHdmx+2jzw7c+oN3/cC7edZrvOiMLac85XfxBAtlEgca7Nkv9ct0gQRo9ALQ98PwogDmiITPkmBBzN9LI1DHABjjkjnRRLHzA+5FzIuksJ991bvf/j+jbN+5//w+szs7FSt3vD9EpDJuUKpFPOjYVh1x8ZNZ+i0HWbZ08lTtaJfrVdPnDwWVCqM8TSPt/f2Ln786cXLl6vV8Ozp08dOHJ+dW5ianBxvNSu1mh+ETEpkUILgy/Ad0lmQ0MHodsmznEA/OVVJ7va6cdzrxD9/50ePlvdenPu9CVrK0/SJ49sTJ6+v9T9xF4KX+k98wT2xv+niKxcGnfWaN0EPh7ur+fS5qbln/Vs08bzZoFohT1T2onywlU7XoFVfvevsjazapfOOR0F9ot5oKs8HxhzDsrTTRNY548ABjIAieMhbHP0DoyPKRhXN50CXAtJ497Mft+bO+cFY7vlBkGeFttrYg7azfJIBwZGzhVm9d++zy5c297uFMb7i9WrwhaXWv3yK8vb2R+65dPacH/lC8nL+i44Bd+CgFJGFNE+HQ+GHXKi7ffG/XOum7e7SUQPIhFRCyDLpEQAROiAmmG5VoRYa68haTu6cc2eIGGeMcyY4IkrfP3f67JiqhEF45eKnH/3yw0sfrTYap1ilNzbrHz1x6syR2amJyWq93qrWVBhwz2OMIZSsOEZIQK6U1VG+/8qzXzg9vujJ4KP33h/GwySL79++sPpgVcm5V9nUv7o1viM2/mdc30zV/+2FL10RZ//vN/q1rfxl6b/VfFTsxF/ITvXW/aS5M7e7fzHFt50Yv92oP8LO3ZWvTdqvnkxr4uFn6eK7w9vTgTl39klPBUIIhkLbsi5mdAAmADgkv8CBWD9AKSlDpYbyCO3uSl9WAHAkwOi9axfl3DtnX/kvfM/LPN/3tc4LrQ2MLJHKtzsCVudxsru+ttOLHXJH+r62eof9SY12VpLvruzC3PLSkYXZ2dl6o6l8jyPPCszz3JPEBddFAYOYeQPknnLhH5yoNI6cenJCTU/UwygSgsPBtrWsF235uiVHycBxAcAPl+2jM0ZKebKlFqLoD6fG3vzim+vrm73NyXR57Gf33vlwbx/ubE/mPzpS0f/iqcbk0sTd6tnxuYWpejWvz1FY44ILrf1+agCKQIEUufY6g/qsfP6Nsw0t9rYH3V5/Nu03zJDmhWjMh4MbO52+252M/rx6mlPzOWvf2ZM7LYnBg50Xly6Nf+N92e9Xrs3Hmyuarqbe89e/1ZBjd4Z/+eHO9V/ssIkjEz9eXLzaM6+mZpCZ1JiQgB+S9kbodUAA9jneLRzQ4cvi+WCZCVTO7JwrGbCMofjw5v56J6Xd//VfHX1mbvp47vlFoIu8MIXOGCcwI4P0klupvPlTTzw/GPLLF7Z7XWIirFXWU/Mvf1aomcU7RYJXLt2+d2t8bGxuZnZhZkYFY73h9Ga3/fQpOTNVBWtzRyAYcFmN+G8fDwNV8T0upCgfyDIdHF5vIymYXxVXftzojW4VQEDpqam5+cmp2VPni+62uH3F3PafXqHYEpjV1ZPm2jf1TXMZ0r0fTZ+per7/c/aSfPr5V4/5Ym9Qu+5XKhNp099Bc3Nf/vLDbPUOBP7c4snakaOhHpy/fd/urO1qkQyfto356BufwQ01dOzGc2y8MJTk/nA5/+9Wi94pb72a3+isQKXgc1OV8BGPaSyYfX76xfba9sWte2uPiupAu7z7heNPvXby6YXZ6Ua9opQqh3GPmQcMENhhOA9pyaOPwZUC/WVvNKpWRmRyhuKvr7bT3GZ3L04+/ef/+k//deD7hc6LINB5oVRutHZ2NIFHxhChOt469/qbzenZzy68vxbm+rWnk6vLt649olMnRKPHPr4zHGZxsrG2sX0tuOG4Z2G2XmmcGp/PIgSGwJi1GggjIL/e4DzA0rivXKA/fgbpcUT/N/x8R9OMgwgzZCCZJ2RzDo4r/MMji18yCWNQz//wefP0QvKXGzfWXp/KokH2o4vwl4OtP5n+bGwiuHRp4/5Pj78++dJ8syE21zY2Hz3ay+/lUAC71cknJmpAK+s73V5nZVcmf0K1596w/5fTset3CP/H9c73/l+rT6bJfFbA25VxXdf9O3/Ort1S854IPSyMEOl9+5MmU9RIjvhL9VBOz8weP3f23FNPj42NI+flDssBjYQCDhIpjIpteEyJc6Ugzii1IiBHRMZHZVI5SsmN6CUaCJ2hv/6zv/r6m1976swLeeEXvi58rwj8Is+1tc5R2csBAiHzKtHCk0/Vpic/o+3V5xfzhbnBVjt+/7ZivFQYt8aZzPbSnMARbEPefPSwL2ApqleZVHmWal1YpxkVITEoZC4nGBPcGeISpCznip87o6M9D43uDDqQecSDZglx5FxKAExKnJqWk5OTDKiw+cM+yzppb/N0a2qr6JtP7sOPe97rXxr76hna3Xz0n97v/921wQJ78N8szL5lOr+1t/Z04v4NsR8w1tuArW0keA8BgMy2of/lU1lAZVx53AVxjDe2Ny8FC1eOnon66ydmJ+tnj/Y2OhPibCsKojBQx56t+GFUadXq8sngBc9/MQhUUIm8qIJSlEErKcOP6+2DArwcrFrr6OCHIyIEhuxA66nUfrCF1kVe5HmWJWmSxIIJEXpiLIjGKX7w/t+eP3428P28KPzAz3Ode1kJABtlahyxxoFjdX7upG7Zfppb3MmL+kbbISMGUmDhXKy1QPYmLAHChe7aLz+7trqzc2ZpaWFuNqxVDEIusFAU+sOa3no0WAy1t2gfDjHYqz+VVcel50spR7O0A1u1w0N5IISAAMAFDzyVpXG31yEHikue5IWxEAWeJ/fi7v/02XuTKyv/ewNHUo+c11GNb431njiNjKL8syPTD8SxeVuZazaOTuX7j+Jd3lD1p02QhJVKEHgMhODK86WQylORUpershkFge9ZJgnl76i5o3ljQh8/29CVZkjPMQVCeJKxsk9ERA4ggZEFTQcFiBtJFhCwx7wgzrkrqzJH5dN56CVXMv3KqFpndZHpQud5liZpGsfxcJgMesVwkPR74rfOjc20gqmqbEU86lxvL1+aPPl64Pm5X3hB4ec+6YKctY4OjkhJDwEC1/TCM0M0D5PcyB5nBAgMBcOax5gIAqf+j8NnuMv/pdx+aIfxw9W13f0TW9unjx49dnymGQpJvnEYio63dy/ernvqbtPdDuH09eAr7fmn65NTtTA0xC05VWL3Dw8rIJX6f4xLKcIwNEV2/dqV2zfvHVWNpzfYz7vLa3PKj8LOoLd8/fLa3v7/KPFYo/rtf/xHJ0Uw9/f/3+5P1q89HIoLL/wX3uJTvz0NS1MhE48GT+UMo2bzubB63gs4R0RgJZyeMcaZRAgZMc4coCMwwGZQPKkRaJZzxzgZCwRADB05MO7gzjCHktxEh4BmKk3jRiO6g4umDCIREDDOsJwJOeuM0UVR6EKX5zAeDpP+IB/2skF/2O30uvv7+939Xk9865U5JQQyALDodPuzHzbmnvD9ml94ZU2k81wbY52h0RQNGEO04BxAYSfR+8qR08/9ln/pw/eu3749zLMUWUXK8+MTM9HM/X3X7/aGVplCJtomnf72ML6+uvkVffTc3JFhnHc7Y15YN/leH8JHlbeOymO1vU/53Z9tdDE5/dQF1/zhnb7E+F88NzHeiDzfV1KO2tqyaGCMIVrrqDB3rl7/zl/9zbyrtuPJt2H9nuyWDUkUYFG4j9Jiu3bqD556w/e9vU9/WfvxWvfT3p8ln8rxvLI9NqW3TjfdzMLc2OQCj0KPs4K4I0fg8JCODmCAckREMAQOnKVy4lmSa60rB9UAYEdtwyFF9mBsg+5AlJKo3FBhqfDgiJx1cDCFcQ6cc87qUS7NsjRJhsNBkSR5Guf9Ydzr9Dp7+/v7O539/V5/ECdFoZ1zIqqGQGCsscZy5Pn6rfbd92ee+s3AD4q8yHwv8/0iK4x15Us/2JchA0BHSoCIvMbpExPjY/MLn31y8cLa1kbHZHp/yxl6p6arc8Gb8tmNwXC9vTfo7p1J4yc73fd/ce2/W1urh7WzJ48eObt0f0eEnMbOP7MWvISVV/Nof6Iyu+eq/89LRX99+M+ekZ39XZMOJiYnsFoVQhwudwjIWLvfbl+6cnllY98x717afsS7TolKYzqJk6U5+9/+Vu3OSvfP3obOfmd5fXVhfCnvPZHkW37ycLU28dHE63SZ15OLf3x+72x/3tt+trW46Ddq3AtKcQhCoLK2R7AECRBSKXZBUMpzlZ8/jQQXymceyB22/AfT+VFNTnAwxCCy1pX9YzlHdUROG2tMUZg0zZI4ToaDdBhnSZwN+2m/F/d73W5nb6+92+v2hnGS5c5YIscYQwAhhCiNVxEAgVlnwaZ7V35YX3o2rM4WRZEVRRGGRmtjLRysz0bFF5YvHEoOU3Vi7IU3Xj+ydPTTCxcuX/9sr9/5LF6+IzcalXBhfGxmbOpEffHV5eS55W7icCvjf3W1g3bn4qPdaYH3NvZaew/Gw5nTx09xb5qdODpbqwfafzOJz7/a+Menaw8e3F5e3uRkGVEQhoxx5IJxckYTsDzN4iT5vZdfm1DB937xi0olf+utN77y1d/f7A0wufr84sOzS9dsZv/tL7N//2/+P+eOf+3ZwcLbwxP/fZBdOf0nxJfg/t/32tf+ordf/eQG4x8cWTry5W9886lnn1W+d7CkOdgoHUhGHP76sA6nz/WOh9U4jq750R1oR/8DIsNyZUoAbiRgaXShsywvK5pkMBz0u2m/r5Nh0ut1e93ddnt3f787GAyzzGjjHHFEhig4Q8YZjmQfhHMOyGkzUu1hKG17vX3jpwsv/1EQBllR5IXWua/zoiAiAOfs55Vpyma+fCKYp6aOH/nK5PjxEyc+uXjh9oO7wyTOtN7pD+TKWqQU5ukuwP70xMzZJ7+c5fdW13eT/r1P7hXd+Ijp5T/+n7/z7pKaP/PMCy8sHJfNqvqX52u1WiAjwYTMl+94lz8AwVB5+fQEe+EFCFv7W+z2w/jUgnmd7yftT7vZ4Mq5t/6bbw+/dEbFLfHizJeN/eLe6pXlO/+mn99qBv7D27f/+1udp/XUdbd5tVJJ/QnYuIR774Rmm+e8MMjZYNDey5P48DwdTizoYOL9+Lf+we7pccV24Ht6kKvLTq8UpyYiY4wxJi+KNE3j4TAeDOLhMO/38+EwGfT6++3d/c5uZ7/d6w3ipNCarCuVZyVjyLEM4+iPPMjnIs/yz13Lpbwy9W6/2zj+YmXiXObneZYZ3y+KwliLzpUXwMhCixyNkCej102IXjU6+fST04sLZ27cvHDxk5X11dRoclAU9j8BCc7qVr+A+RdOLz1x7NiNR6vXHj5M+umfPmNerG3/ny/sfPDxzYufXTl+8kRzZrrSaJ4+e/L5k6d7+932Zn+87a1depf2lo//4dSzr6T3dxuf/HzmJz8enp6/988m3/3w0p0N9rsvnPnW3OStwL/981/+u17twRuvvuXUwncuRu++O0BKnTXvwcqHsMYj1qJauPHvQyzGT41NtI5PTIyPt5qticmZ+cWx2Wnp+Ycb+9EBK0+kg9H+gQAZHp5VIkBgZUNR9kujcDMcDVuRUTmPNcZonRVFEifJoB8P43jQz/q9pN8d9jqd/c7u/v5et9cbDJM8t9YCAAfkjJWuRAcRHIEf2CHGoBQPLxtwzhkBkANXCvF1d7cvfz/6ylLo+0UYFEUeaN/owloDAOXfcfA20BEhjZqh8m4gwaoTrWdeffnI0rErn1789OqlnU4HAYGxQuDOYPjzixdWNlfPnDo3ceaFZ8ZO+hsXzs7d9J12IPpJfu3ards37zKGwHB8dvILL35hd3M7tidvzLx1s55BVv2j4PjJwbDbPnLrEd9I+jtX7t3A9U7OF+bHX7Pz1y9X2+0X3v/op9/76H/4myd/Mt4cu3V7bXLmWLMW1ar1eq3Sqtcb9WalXg8aLa/SCALfC/ygXPMIVoaGCPDAV3E0EhsZRT0eaZQd4eP+eDSiQeccHCxcAZgjZ11ZmuZZlsXDJO734kE/HQyyYS/p93ud9s7e3tZep93rJ1lqjCkXeIIxzjlnI0WH0dx2lA7LQMJhOEv0jwjDoGxJjbFUDnMZkqPOzQ87J15pHX0lCII8z4vC+L5X5NpYY8vSrWzqgdxolX3QRxBiKX8oobkw/WrjS7Nzcx9++P691YfaWcnRWDbM7J2VjZ3ecHi8+frC7KsnFqPGrhusTTUap/2GH1VrtZrg2O91dtt7P/7OjzKiU2+8ue1X77PWN2f/ZPPm4r/efGd+adx6jTzc6BqZyNnp6QAmh256oO3snbtmZ3hkevpMRTTmp46++dIbE81GEPqe78lS8UMIx9Ais8SJCKHUfCjfggNyWFrhHrpEsYPzeRDhUcYd5bnyYR5lX8alAyijqHVW5EWcpMlwOBz0kn4/jQf5oJ8Nur39zk67vbbb3u71sywnS4IBZ1xywRB4WZKMjmD5NzwulMtlVRlHPqqwCJH+/7vBfFyChvXqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "PILImage mode=RGB size=154x192" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "im=PILImage.create('donut.jpg')\n", + "im.thumbnail((192,192))\n", + "im" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + }, + "vscode": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.ipynb_checkpoints/model-checkpoint.ipynb b/.ipynb_checkpoints/model-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..d1cfa06565314aa23939e718b33e4b28aad43534 --- /dev/null +++ b/.ipynb_checkpoints/model-checkpoint.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "f86c8e41", + "metadata": {}, + "outputs": [], + "source": [ + "from duckduckgo_search import ddg_images\n", + "from fastcore.all import *\n", + "def search_images(term, max_images=30):\n", + " print(f\"Searching for '{term}'\")\n", + " return L(ddg_images(term, max_results=max_images)).itemgot('image')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9ae55d0c", + "metadata": {}, + "outputs": [], + "source": [ + "from fastdownload import download_url\n", + "#from fastai.vision.all import *" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1efed2ca", + "metadata": {}, + "outputs": [], + "source": [ + "searches = 'donut','scone'\n", + "path = Path('donut_or_not')\n", + "from time import sleep\n", + "\n", + "for o in searches:\n", + " dest = (path/o)\n", + " dest.mkdir(exist_ok=True, parents=True)\n", + " download_images(dest, urls=search_images(f'{o} photo'))\n", + " sleep(10) # Pause between searches to avoid over-loading server\n", + " download_images(dest, urls=search_images(f'{o} sun photo'))\n", + " sleep(10)\n", + " download_images(dest, urls=search_images(f'{o} shade photo'))\n", + " sleep(10)\n", + " resize_images(path/o, max_size=400, dest=path/o)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/app.ipynb b/app.ipynb index c4c7a2d904977fd69f7d54dd1cb172817dfbbd8e..aa6bdfd2561f236f1c514e37d1b88514eb5f59bd 100644 --- a/app.ipynb +++ b/app.ipynb @@ -4,158 +4,418 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, + "outputs": [], + "source": [ + "#|default_exp app" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#|export\n", + "from fastai.vision.all import *\n", + "import gradio as gr" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching for 'donut photos'\n" + ] + }, + { + "data": { + "text/plain": [ + "'http://images.unsplash.com/photo-1551024601-bec78aea704b?ixlib=rb-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=1080&fit=max'" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from duckduckgo_search import ddg_images\n", + "#from fastcore.all import *\n", + "def search_images(term, max_images=30):\n", + " print(f\"Searching for '{term}'\")\n", + " return L(ddg_images(term, max_results=max_images)).itemgot('image')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Path('donut.jpg')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from fastdownload import download_url\n", + "dest = 'donut.jpg'\n", + "urls = search_images('donut photos', max_images=1)\n", + "download_url(urls[0], dest, show_progress=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Collecting gradio\n", - " Downloading gradio-3.6-py3-none-any.whl (5.3 MB)\n", - "\u001b[K |████████████████████████████████| 5.3 MB 3.8 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: pandas in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (1.4.2)\n", - "Collecting paramiko\n", - " Downloading paramiko-2.11.0-py2.py3-none-any.whl (212 kB)\n", - "\u001b[K |████████████████████████████████| 212 kB 25.4 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: pyyaml in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (6.0)\n", - "Collecting uvicorn\n", - " Downloading uvicorn-0.19.0-py3-none-any.whl (56 kB)\n", - "\u001b[K |████████████████████████████████| 56 kB 15.3 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting fastapi\n", - " Downloading fastapi-0.85.1-py3-none-any.whl (55 kB)\n", - "\u001b[K |████████████████████████████████| 55 kB 16.2 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: aiohttp in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (3.8.1)\n", - "Collecting pycryptodome\n", - " Downloading pycryptodome-3.15.0-cp35-abi3-macosx_10_9_x86_64.whl (1.6 MB)\n", - "\u001b[K |████████████████████████████████| 1.6 MB 95.4 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting h11<0.13,>=0.11\n", - " Downloading h11-0.12.0-py3-none-any.whl (54 kB)\n", - "\u001b[K |████████████████████████████████| 54 kB 9.5 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: numpy in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (1.21.5)\n", - "Collecting httpx\n", - " Downloading httpx-0.23.0-py3-none-any.whl (84 kB)\n", - "\u001b[K |████████████████████████████████| 84 kB 11.8 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting markdown-it-py[linkify,plugins]\n", - " Downloading markdown_it_py-2.1.0-py3-none-any.whl (84 kB)\n", - "\u001b[K |████████████████████████████████| 84 kB 12.8 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: matplotlib in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (3.5.1)\n", - "Collecting orjson\n", - " Downloading orjson-3.8.0-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (483 kB)\n", - "\u001b[K |████████████████████████████████| 483 kB 19.1 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: requests in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (2.27.1)\n", - "Requirement already satisfied: fsspec in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (2022.2.0)\n", - "Requirement already satisfied: pillow in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (9.0.1)\n", - "Collecting pydantic\n", - " Downloading pydantic-1.10.2-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB)\n", - "\u001b[K |████████████████████████████████| 3.2 MB 24.8 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: jinja2 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from gradio) (2.11.3)\n", - "Collecting ffmpy\n", - " Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n", - "Collecting python-multipart\n", - " Downloading python-multipart-0.0.5.tar.gz (32 kB)\n", - "Collecting pydub\n", - " Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n", - "Collecting websockets\n", - " Downloading websockets-10.3-cp39-cp39-macosx_10_9_x86_64.whl (97 kB)\n", - "\u001b[K |████████████████████████████████| 97 kB 14.0 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: aiosignal>=1.1.2 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from aiohttp->gradio) (1.2.0)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from aiohttp->gradio) (5.2.0)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from aiohttp->gradio) (1.6.3)\n", - "Requirement already satisfied: attrs>=17.3.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from aiohttp->gradio) (21.4.0)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from aiohttp->gradio) (1.2.0)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from aiohttp->gradio) (4.0.1)\n", - "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from aiohttp->gradio) (2.0.4)\n", - "Requirement already satisfied: typing-extensions>=3.6.5 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from async-timeout<5.0,>=4.0.0a3->aiohttp->gradio) (4.1.1)\n", - "Requirement already satisfied: idna>=2.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from yarl<2.0,>=1.0->aiohttp->gradio) (3.3)\n", - "Collecting starlette==0.20.4\n", - " Downloading starlette-0.20.4-py3-none-any.whl (63 kB)\n", - "\u001b[K |████████████████████████████████| 63 kB 8.9 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: anyio<5,>=3.4.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from starlette==0.20.4->fastapi->gradio) (3.5.0)\n", - "Requirement already satisfied: sniffio>=1.1 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi->gradio) (1.2.0)\n", - "Requirement already satisfied: certifi in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from httpx->gradio) (2021.10.8)\n", - "Collecting rfc3986[idna2008]<2,>=1.3\n", - " Downloading rfc3986-1.5.0-py2.py3-none-any.whl (31 kB)\n", - "Collecting httpcore<0.16.0,>=0.15.0\n", - " Downloading httpcore-0.15.0-py3-none-any.whl (68 kB)\n", - "\u001b[K |████████████████████████████████| 68 kB 22.0 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: MarkupSafe>=0.23 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from jinja2->gradio) (2.0.1)\n", - "Collecting mdurl~=0.1\n", - " Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n", - "Collecting mdit-py-plugins\n", - " Downloading mdit_py_plugins-0.3.1-py3-none-any.whl (46 kB)\n", - "\u001b[K |████████████████████████████████| 46 kB 15.9 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting linkify-it-py~=1.0\n", - " Downloading linkify_it_py-1.0.3-py3-none-any.whl (19 kB)\n", - "Collecting uc-micro-py\n", - " Downloading uc_micro_py-1.0.1-py3-none-any.whl (6.2 kB)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from matplotlib->gradio) (3.0.4)\n", - "Requirement already satisfied: cycler>=0.10 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from matplotlib->gradio) (0.11.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from matplotlib->gradio) (1.3.2)\n", - "Requirement already satisfied: packaging>=20.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from matplotlib->gradio) (21.3)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from matplotlib->gradio) (2.8.2)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from matplotlib->gradio) (4.25.0)\n", - "Requirement already satisfied: six>=1.5 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib->gradio) (1.16.0)\n", - "Requirement already satisfied: pytz>=2020.1 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from pandas->gradio) (2021.3)\n", - "Collecting pynacl>=1.0.1\n", - " Downloading PyNaCl-1.5.0-cp36-abi3-macosx_10_10_universal2.whl (349 kB)\n", - "\u001b[K |████████████████████████████████| 349 kB 15.8 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: bcrypt>=3.1.3 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from paramiko->gradio) (3.2.0)\n", - "Requirement already satisfied: cryptography>=2.5 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from paramiko->gradio) (3.4.8)\n", - "Requirement already satisfied: cffi>=1.1 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from bcrypt>=3.1.3->paramiko->gradio) (1.15.0)\n", - "Requirement already satisfied: pycparser in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from cffi>=1.1->bcrypt>=3.1.3->paramiko->gradio) (2.21)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from requests->gradio) (1.26.9)\n", - "Requirement already satisfied: click>=7.0 in /Users/dinglab/opt/anaconda3/lib/python3.9/site-packages (from uvicorn->gradio) (8.0.4)\n", - "Building wheels for collected packages: ffmpy, python-multipart\n", - " Building wheel for ffmpy (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4712 sha256=51dd2d770517fb8d6fbde09ce138e4f739e1b5cde0ceaf79360170d436984e38\n", - " Stored in directory: /Users/dinglab/Library/Caches/pip/wheels/91/e2/96/f676aa08bfd789328c6576cd0f1fde4a3d686703bb0c247697\n", - " Building wheel for python-multipart (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for python-multipart: filename=python_multipart-0.0.5-py3-none-any.whl size=31678 sha256=1003fb9bd410d535b246e156b16f4cd2f0ff15995dbf4d175865d59765170d7f\n", - " Stored in directory: /Users/dinglab/Library/Caches/pip/wheels/fe/04/d1/a10661cc45f03c3cecda50deb2d2c22f57b4e84a75b2a5987e\n", - "Successfully built ffmpy python-multipart\n", - "Installing collected packages: mdurl, uc-micro-py, rfc3986, markdown-it-py, h11, starlette, pynacl, pydantic, mdit-py-plugins, linkify-it-py, httpcore, websockets, uvicorn, python-multipart, pydub, pycryptodome, paramiko, orjson, httpx, ffmpy, fastapi, gradio\n", - "Successfully installed fastapi-0.85.1 ffmpy-0.3.0 gradio-3.6 h11-0.12.0 httpcore-0.15.0 httpx-0.23.0 linkify-it-py-1.0.3 markdown-it-py-2.1.0 mdit-py-plugins-0.3.1 mdurl-0.1.2 orjson-3.8.0 paramiko-2.11.0 pycryptodome-3.15.0 pydantic-1.10.2 pydub-0.25.1 pynacl-1.5.0 python-multipart-0.0.5 rfc3986-1.5.0 starlette-0.20.4 uc-micro-py-1.0.1 uvicorn-0.19.0 websockets-10.3\n" + "Searching for 'scone photos'\n" ] + }, + { + "data": { + "text/plain": [ + "'https://www.janespatisserie.com/wp-content/uploads/2015/02/IMG_9481.jpg'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "urls = search_images('scone photos', max_images=1)\n", + "urls[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Path('scone.jpg')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "#|default_exp app\n", - "!pip install gradio" + "dest = 'scone.jpg'\n", + "download_url(urls[0], dest, show_progress=False)" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 9, "metadata": {}, "outputs": [ { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'fastai'", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJoAAADACAIAAABziO3RAAABHGlDQ1BJQ0MgUHJvZmlsZQAAeJxjYGDiyUnOLWYSYGDIzSspCnJ3UoiIjFJgv8PAyCDJwMygyWCZmFxc4BgQ4MOAE3y7BlQNBJd1QWbhVocVcKWkFicD6T9AHJdcUFTCwMAYA2Rzl5cUgNgZQLZIUjaYXQNiFwEdCGRPALHTIewlYDUQ9g6wmpAgZyD7DJDtkI7ETkJiQ+0FAeZkIxJdTQQoSa0oAdGeEQwMoDCFiCLCCiHGLAbExgwMTEsQYvmLGBgsvgLFJyDEkmYyMGxvZWCQuIUQU1nAwMDfwsCw7XxyaVEZ1GopID7NeJI5mXUSRzb3NwF70UBpE8WPmhOMJKwnubEGlse+zS6oYu3cOKtmTeb+2suHXxr8/w8A7pNTlvGwJJAAAODXSURBVHicfH13fBzXcf+8srvX79B7B8HeO0WKEtW7ZEu2XOQetxQ7PXESJ3GcON1xiR3/3G3ZsiVZvVFUo0iKvRMkARC9H4DrZcsrvz/e7uFIOcFHpnG4u73bN29mvvOd8tCF33wFIQRIIkBSAgAghKSUUkoAkFIihCQAkhKEBACBoPSDEYCUACAAIYTcN4N3EZAgQUoBQkohpBRSghRCCsG5IwUXTDDOBGNCcMaYlFIILoT3wSBBIClBSimEAAD1L4DACCGEEMEIAGH3EcYYY4wQIoRiTNzHGCOCEcYYU4IJYIQQYIIRIupNCCFAABgjhKREgBAgdwVKt1l6KBFCZX9XX7O0UBhJjEFKwTlXfxHSfT+TEgRCgIj3bSUgQBikRBLUXwBAgEQYq09ECGEJ6uKLX0BKAQBSIoRA/Y5AvUytO3WXDtTaAyBQ30JKCQgQILj6BgABSEAICSGkeiQlICQlIARSCFfAUirJCSlACM6ZJ0guOWdCSME4VxLkQgghxOI35hKQBACQCACV7gd7t0oIQbgkL4IxQgQjVPobQZQghDEmmGCMMcIEY4wwBoQwwqA2qFpEhEDdNgC4W9EVEip7CGW/oaulWHqGS7Xb5OLOk+5tgFS7H5U2PHJfqD7dExtGrv64F79qx4B7RfUUR4BAApJIuq+UgDxxIldQ5Rdf/CKlDwMABOrVEiGQrhZJKZgUQkophUBqf0ohheSCS8EkF0KJVv0fl0J9RfUOEFIoxS9tGCS8PestOniLjxDGhJBFUWKEsZIuQRgTTBDGSP2LEMIYIey+mShNBAmAJbhWB8DbO568pLvu8pp9rJZDSIlK6wcgpbfhJSh1RAKBJGq7IwBAnEsJkgBB3obxNor0Vl2CeqlSCSkRSPB2tPcl1d+RBOF+mFzcKt7qSVq2Edxvr+5d3VjpL4vfXklCuvaTcy6llIILLlx1FFwIrrTN/RFCAkghBOdqKwkJUkoskZRSImU63HtFgAADAkB40YQqK4oxEIIRpkqiCAEmVMlTWVmln4BdOyoBIYRhcQWRBAClQ+4Neg88IwMgEcLuHSJUUkT3FUKWaw+UVrqkB0JK104KjJCQIKVAEmHPJ2CEXbUBKG0nKQHQ4qepX0C6llHZTHfNy1R28RsvKp2kkgtwd225z0Du7yWTIiRIwQWXgkshpOCcL9pJIYVkXPlGKT3lK1mKkmkSUoIEpLaplAgQRljJDRAAdnerWnuMCXEVEFOCESZEPaIIY4QxAoQwVm5PfWVw3ZJ7EXfbS89mgiw5jqtNpcIN0t2tQpYcv1jc5ejqt7jagQRIkCWr7GqqlNwTCgJEMALk2XkACRIj7Jlt9Xp3e6HFPyn9U2Jw95EnC/XZAgApKOI+lFJKSdUlSm5Q7UHwcAtIkK7QuBRccC5LIhRCcO76yDJf8u7bXtwlCNTCKVkARhi5eqdcXcm6YoKUw8OEEIRB2VFMkHKRCAMG6W4CVPoUd9eXFqNkIq+GNuUSLRdt6RfvSouvlIsfUbbsSKGSa66MXPGA9/0QVo5KrYO3dRa3xNUa7u4v5RE8H6wsnLfOwsMlQgjBQUghpUKUVAkXAVICdO2nAiucSSFBcu4KlIMSnZBlllR6TmPx5kvyu8r/lVCAB0QBoZIXJIQihDHBgDFGWEFAwBgp7QUMCCG1CaBMbCUX8ltdnfu6d6G5q6VYkiXyXvm/XalM3kjpPSpHUgCu3y37gsi1oot7Ti7aWM9iu5tA+WXPxgohlM5K6fopwYUQnCu/xoXggnEhmOCCMy4444xRKTh4nlZwwbnDmcMshzHGuSOFQGXbE6QEyUGCdM1FyRx5lkHJCaD8l5IIQUUGCpsSV/kwVr8rCKPMpqu0apMCUnZYSqRCIm8RvFUv8xHXbiZ59WtQGca5xooAgBCiDM0CgLzqyp7QVEzheSckJS69q3R55EF9Zfel61IV3pEIgZASQCqbrkIzdQn1u+fapOBccCaE5JxJxjjnjDHOOBdMcM6ZYLbDOWNKXJxTwbmKYQTngnPuMMexLZtxx2HMQVK4VmPxR0U7ZV8WgVQG0g0WlBfDLprBi5BGWUyFPDEpgc9FFOpBPHc5ALm4HNyoCUpGSm0ODyB4YKH82atF9W4R/la1luqDPEW9SuM9NFoyueWGp7SNlAcH8DAqQiVdQMp3KgRWun7JNQpZig445+pfzphwpehwxpntKNk5jDu2IzhnjDucCy45F1wIKgWXIEEIqd7kOIwxwR3GHcexgfOSRJCnZBIAYfW9secFMcKuoJQ4VbRHMAbXhNKSTAFhibAKBpTJdTc2Ru5iqrtU4YkXCyg87gJBFysoNwVeXAflSlmmZ6WFXoQz71bfRSUGqWBl+SZ2XaQrKs9kLJql0k1I+Vs2k/vRSmzqBoUUCsm4EERw91/GBeeccca5ZI4rEYc7DrNt22GcM84YZ1w6jDPBpYCS7wMAKgUD8MIIwYRgXDD1SIX8BCEECCs3hgBjBG6s7kJPhBEiBONSzOA6RU85sUQACIPH4Eh5dUCNrgKNEhYXsTyMv9pyvovh8MiNkhd8t8w8Uqmk/bJclmVICnlig/JPLCM0oGQmvEilLI78LVYBCSFAApJCCAGlGJwrt8eUFrpm1GGCMeZwh3HOHMdxHKZUVDiMMS4Yl1JIIQSXIIRU/BYoc4iAghTefhVQAsRCoFKgjYAo90YUZUaAYEooVv6PUIQJphjAdX4IIanEr25U7WeES+uGcUl7Fm9cyRMjJKVwbYCExStc4x0ByXetnXoxBhdVgKfo4EIPwErzXDO6KIFyLbxaIwFc4rMEZ6T3X/nPu2Cz5yA8cCmky56o6I4JrrSQMeX1HMZs5jDGHeY4DufCYVxwwZSUBQghuXADe3V5dUsYE0KAYEwwIpgQDFQI7uFFF4AjkAgkRkAREoRSApquUUoxRoRSQiihBBOCPGoUMMEYw6LArtqrns4tYoHSqnmQQV71HndpFrlfeFf8824QWw5gFok1WeLSSqj1XW/09soi9eZZS8/5YblIisprPrrM8iv/LRTNyYUCnwrLcMEZ51wwxpkCm4zZjDFmO47NGOeCOYwz4XDBucuKCiGFVByQCnIwxpLgUlQOGGOKMSGIKoFQTAihwAVgF3MqpCkFBoqllBhrgAAjpFGqG4b3DgJEWVSXxQbX/3mBwyLVsSgPVLZ8UKYEizZNuqH0tYv1fzwsu6z7fgU6pbxKagg8uAEltkSALFfEsiuVX9FVMvcCXrBYuqQb3bqhG1ehgfJSgjPBuGdFOXMcF5U6nDkO59xhXAmaScmZF9hLuNohIIwpVTYPECAgmKhoDRNMMaYEaxolBFNKqUYwIbR0Iyr0IwgRjDkhFHPuhcIEY6RRTCgmFGMiMSpFlBJJBAIkvsphvHv1UYntuUqWiyZU3QdCCCEVMJRjmfKrua4RuVaPSACEvDxPKbJZ/HCxyB8q3VXO4Br5qdQNv+ZbgfdH9cFKplIKpYVSSsGUABlIFfwJzhzGHMG543DHcd2gwwTjnHEOiokRUMa/ICmFCg8AwI3XMMYIEYIopZQS6mIUwJgg5faIq3uUEKWbBCOMCUVlP4QQgRBFmCDMsWAuYkISIZXJUXtROS7kcY7eRl70cNdggRIqvlYD3iX1EpC5djeUrTIqBZ4KsHh0YdlOujpelKDCPFQyHx6GKvsgF6+qb+/elHA9pZu2Ux5McBfFKD1kjDHGmRsFqoDCdhyFb5QLdC2okJwLBJgLN79QInEJ0pCiTxCiRDk0TCnVKNE0jWhE/XgxgxcE4hL0xMglYxBVwT54bBlCGJAEgkFKteeFBAQghERcKAgl3fhBYpc6h3JjVfJy6neMsZQSJEdCSuSGJddAm2uEd40pLj3rvcv9UJWc9CQsXYFgAIk8zhTU5vfE5N6nVLypGwOpa3IkAEC6NIySnlDKx6QQnDEuhGBMcMbcaMH7UYhTWU7OGJcqJhCKe1Ma4HHois0kGBOKKSEq36MRigmmlBJCKCWapmkapZpGCKGUYkowwaVcgncTrg9z9wW4ho2WAilvc0uEQHj+R4JEZRjH04prHngv9pwWkiAUOihZPQECCYQBAJfM6TXqeNWnuPtA6Z+CoyV+1pWkKHt92ftL1rYEoH7LRsGgrLAAld+VIISQkgsuJBecO0IKwThzVJTHOOeO43DHk6DDOec2U9GcYC5+8UxwGdYuuSVFfVFKMMGaRjRKqUYoJRhjT3KEEEIoIUSjmgtTVNSH3QDP3fhCSo/KFcgzUerGqGckF6NvpASIkESAAUvvWU9Lyn2kyuIgl7JRls77KHB1x/2fCjAQdksLSgqq1Ld0fc9aqNVX0lMZM+9aaHG1QMgyJ+vtK6XByPuq5TbbI5sXlVDKUpAtvPhPBX2Cc9t2mG3bjDOHuwaUC2U2hZQOAyG4lJKLMmsOgBAibu4cUYIJwp7aEU3TqEY0jRJKNUoJpYgqX4hdrppQhDGlRAGhkh8EAOWsVRgJWEghQWWLhFQMDEhJS/tI/aIygN4Sl1YVlV/3mp3uRsol4wkA71K4a1SwhImutqL/C0rykrreZ5Xc5zUgevFOSpqpNM/d0IIjIYUbhAvuikUo58cYc2z1PxUPcs64otMYF9xNuZd/qMo8uY4beXEBAUQoUcGDphFN1yghGiVUp6QEbIimNI9gjIhSQdd3quISXFZiUrbIUgjhfrL3bVQ2HXGXMaNuvOmGTq52qhiKICmEUFUtyFVpJD0bUlpfN99bttCoVL1RZpzVd3PpOsWywjUavxj2lV+tdPGyzeFtHARudUApcBWi9BbJOXfxixDCpbAVncZUNOgwRbw4tiJCPVijSFMOUgouQK2BlKAAJwAoSlPDSIKiyRDyVJASQgg1dEIo0XSqUY1qlBCCVWyIkZd7L9cQVI60XTMJIMqpSpXYVCVXbk4ZVG5OykXGhSIFVcqiaHVJTAgIUXpWKlIVIwEAQgoskWeZpafIpYfguWe4OsAHz1NKqYz5Yi5CIc5F8PkuuFR6KAFJJNxtJYRUeYnSnhWlogghOFM5ds44Y7ZQAZ/yf4q8trntMM44Eyo1r5YLvNy1+holtcGYuLhEYRkVQBBVl0QwJoRSgl0fiIlCNlRFGW5xk7vdMfZ2tASEPKO/aF0QQgK8RYBSjLT4U2K1sKt6rhLSa6xc2UNEiGtCJSDhCsB7nfCI1xJ94G2u0pe+1jZeJZWrbIgLopCQAhDG18Qo0sOfUkiVZ4RSxtwVnpSCqSy7FF7wzhWQ4Qp5Oowxx+ZMOAqiCskc7jFnKhxxhQcuQ40JuFUPhGAV7GmuwlHXnFJKMQGClbdUgi9F+sR7G/Ls0ruNjVDAWynbYuFfmccpUwapstkqikLqH+QpkUts0aucHELgxhUu+1mqQyReWswN2KVEQiKMQGJVseQVBlyFfK/xoODy4K5LQB6Z4xY+qTvlQkEfWeJlAATn6klQFlDl/xQHw1z7yRnnKovEFoM/5gIYyfliARoA4gLU8gmvGtOTnAogkNIxTSMYe8wmJVSjlFJN07CCL4QoOg1KNtOLIErb2pWldKv0Sj/IQ2XIq5ssVb6UbJQqRoEyA6ZE6a5wCc96Pk2CpMoGK9mBp0yKKwCv4rS0FVwKA1yLIKVUXhgEBsAIOAAC8JDq1dinVHq5aDZdC6y+lmdGAKTg0q0PdQO3UlGLdE2oFx+o/1eCc5hjOyq5q1gYwYELJT4XEiKES1k1jAkg0NyCQEQIoRRrVKM61TRCVRivCOoSAYMJoVThUDd35PkpDwnKq2/KlQOgclkKr+JYLFKHixgCSY+A9JhLD26VwIRHEZSCe+kJmYKHfaQrMeSZATeAQwipOiM3JvU+XgEEF4LJRUX2gNRvqVNFXgyvXoDdANR1DaB8oXSJFyld5FkKISTnjmdHOefCccXKmbBdclRwJoUbQrr7sITOCHFrOgEBQZgQFctjQgjVqKZRTdOI5oIXBTgJUaVlGGOiwCvBpVwhWpQRAFbViqWM7FWexTWVai08aCpcJ4MkQqACSEAq9sAlGbur6oINvChj73kPW6tdIylC5CrEoX7xXLDnmJVSy1JFNXKZPvcGwGNQPaalXIoIXBisaELFobpsiZQSSQGuDBW3wgRzc0mOwwTnzMMvnHHFuSgZK18iuJQAHvqRXJR2lVspTbxwQHMJNJfnVLQ18X4npfCiVOmiJKbMTMmuuV5FkUhedR2U5Vo9Wyo9HS0DAtL1f8Kt9FQOSgEtz6SVUyUu81Oq7PXssBcdejat9OGlOlsFScpywq4mYc9qomuLTCSAimi9YB88kttVdHc3Ko7QK3J36ye4lwJ0U/Lc488Yc5jjpnKZ+x+zGWdcMkGYQIwLKQQCgUvo2vO7CCEVfxPs5Rw0SimhmkYo0SjVNEo06lUnIQVysFeH7YWAKoGBS5ZNyQdLb/UWg0+Xb0RSVdOp2sfFmpRyQIdU04SyFhgp7OUtt7ttQN0KKOpM6QcGUASW+nThrb301l+oGxdCAAhasorqK5aBSiVD5MWHgBQfWvKCyqoLKRAgJBBCEhNQ28IzcK4p4l7+3EsfKUDJuSMElyrb4DiccS/5zhxHMFWopuJGIBwZJqeWIxgXBEDD0k9Bp4h4IlTNDZQQQjClRFsUJCUaoVRT+XYXqrqlhEqJsasKmHh45irWwrOQnnkT4KlRqQ7IXehSuAdlCBa5nM4iKenG954VUYqwCF1cIyoRRlJiKaRXAqr0XXpbAUAxywBuXk0KKgF5IseqYlh9nlTVwAhKSYqrNhpy/a/02FeEsRQCEHbNu5RSChXKqRCCcSaUyjmMq6IKxoXrC7njMIdxx2GcS4cLIcHTZ0CYCKKZnJhMMCERIogQQJgQEdCxrmFd1yjFLs9JKKWEUkyoRqiiPYnKK7ngRbVmeIHxVQbHtVrCE6IAr9LVK0nzNrlXquF5KS908BIBi4L04GSZoi6SLWUPS1H1oocSApd2CwBIoYTA3XIqt7uiLCRFkiooVU4kKGkqLfR2mhdclllmKaUQEgNwzkuvdwvhhfQyQ1y4pTBMhQ2OzRyVx2XcVVc3FygZF1wIobYXUrUqgDFI0ARQcPN/iFJsaMSv4bDOQz7sMzRd16iu7CV1K2BUsYTXb+QiF+WS8CKHVbJGi5ilVEUGLpXg+gdP2J5AkVTWyr1KSe1KgYQsPfPuGqV3C7gM4Hq0mUSCi5KwwFN3jBd7+KQnTlc6QtDysMEDMqh8+0hVwiOEQrHu1V2AJtyKJYdJrjgxL4jwnJ/jJpG443DGhOW4BBsTgrtpYLd+QILEGGMJBCNCgCIghGiUEN0niS4QlQQTSnVKdJ3oGg5o0q+Bz+cSa9jrFFMNZQDYc38YeVXBJezgruAiSi9PzyyKEy1qJ8BiIAGoXK1dRLtI34DnyEsgtOTRXPxbosYWi/yk9Jyuh3KAC+RxsyWRSyEAo6s3BCoBVkRL93n1XvHCDOmWESq/W0LhXEpVCuE4zDIt07Rts6jqX1TNC3PreIUrSC4ZFzYTQkgmgHN3HyvIoconKMEaxgQDJdTQiKFTXdc0XdMMvyA+iSlW+QdCdIopxQbmPiqVT1RRhKJlFoPrUlDvIaVyL+jaJ+TaUamsqxtiKVX0SDHPdsnF4loMAK7LgcXLAQAuqy/0ClDKn3e/mlz8GkKlC0v7DLtWAQEH/q5t5vIr3kZyw0oAhLCUgnqgCGBxF5Q+T0IpnihTXC/+lSoLaJpmNlNIZ3K5vMkc4VFt6lWg6BjOgQnJhEulKWSvIUQJUIJ1SnRN/UcNnVBCNE3z+aiua5pGsW4A9QHWJKKKSyMEESx0AI2q3lsFRTEgXNqbCLmMrnpQZs2kENK9QQCEFbTBUGom9crSpVQJV+UmESwqW3lMuaii6i9XpXIXea1F+SGEhFi08MqkK54RgSQgqBQIpOAAAnGBuRe0ILUdkVzUPrT4PyUsWvpm0t1PAhYTHerevGpAz12rIgQkVaE1tywnb9o5i2UKzLKY8Aw+CKm6BTFCArzA1Gss0gjx6UTXqGFQQ9cMjfgMTdOoW8ukAClVtCghuiGQJgFLrOoqOJZSV3GFizgkIOLpIQAIgQgOBLE/TIgGgCUiSDcQ0SRn3LaEmWWWY+ZqWC7byOaEtLJRfdjfM+FolTxTK6ygDTqZo9QUqj1GCqkCfADFay4asEVpycVw0ANQKo9f9jIof8uiPZYgpaRI6MCo5EgILiWRGCQpCiIwUV4YYbW/pAdmlHy82mvO6SIuKPsgIUroTq2NeiCQCkKv4j5AAgAmgAgQyoG7WEBKAQJUUybCOkbUBZlI5SJ0Sg2dGp4INUo0jeoUE0owcfum3bcQDBgRJEGF30iC5AQERgRh5HU4I9cDKxPrDwYbe0I17UQPFYtICMsfMIhuUESFFFxyxu3CPBvdC9OTVzo2VJCAzTNDhom/N1ERL4beF6neOS9t+vbq7jw2QFLKacjgJgibYwJoccVKFhMWF0QsPqcUr3xlr1lpT7MBEEaSAteAE8mFFEhIDEJHkmFhe/QcdoNPhVuUIKVwC104Z4xetblAmRzpQVqXt/E8imLnhcBu15eq5iSapmtM03VDF4KBYIwSDCAJQgBAMKIYU0o0XcNURX5egZpGdEWtESU5N6wnpYoml5QBQAhTgQFzKRBCISHq4qPTNtgt7YJSIWWM2tU0m7QCGX8j9ke1UJ1ES+dHK8wMnh+35u2JjWviS1Y2UmGJyaEF2WhWduXTscnphXzU8a1t8UdilUfHVu3/7quXGn+C6vzLty8J1EZTqOpsXl9+RTR3/1ffGisd31HtNFWrFmdXcp7fdB0SQm5IeI2GuCIuAWmPZSmZX8WSEpBYCtXBjkFyKRFIIglIxAUgkBxc6pNzpqhP7tYKMst2mOPQa3ZKKRtcRg6VGxUFerFUGSBCqa7pXPgMEWKSAAR0XTBBCXLrlRBCGFGM3CoYTcNksQ+QEEI1ggkiGBPiJRXdpnfPAiFAgI2w3ra0VubmZoamHMdXKeyGhfNTE8IMVdRGm0IyWOWLh2KXakR0Mlt9YcoasaboTH01MmoaePJSunfgWMX88VVta4iYGj38zItHm2D9p9d2PBBuhls217YMvTpxeQpm4jOnTyPn4iebNvxuZc2y8BXpHz/66tHq4Piy9UZ4r/no4IrX29p3taff2zRjEF7KkoMH8z2Push3lmsw8pTDK5S5tlS1JGG3aUFIyQUT0mHY5NitQlA19CplxBzH4cxhtsNsm1sOYyVjW4r8SzsJFoFcme66AnY9OdGoIRU1iAmlQb/BmeqOAkKAKL/mVg0ir6Flsd9duVFSKovB2Ls3KRDCgWAg4osEIDmbDIX1hpZme36m2H8gt8D1uvbcto0TZl3CqGhEzU1QS/PtMKLj0InGkV4YWTFVSE5FizsfXrZsOQRbr9D+lsZQd/LchZBPTs2vqJ4f7bmytzuir/FPhyYRGnuDPXZm3keX/eGGf1nSEkwtM+ylUD8lmjZWX8dOvFm89NgpJ/PAf9/6vr0DI68de+nmm52aCHYdkCfM8iVz19JrpFEidoGkUglPTdwFVahaCkcwwh1QnQ3MYUyYjGdslGNISFBxvG1zhzm2zSymwkPpcG47bu0gdZFYmbSkFOiqUKw80Pa+ugqHCaEaAMKIEF3TGFO2HEAIBIIQL8xW0lKOFKNSddtVFTEIMAYCQBAShlHRs762ZU0QmUHzUjrRb06LsdH5HKycrG0zxeWGNjHXuqsu0F6fnUqkF07kE+Ti+JoRxLtWVsQa2jb3LDt3fO+Vl3ctjKwM7l7TNrcq1GPQRpGKAqFbaq/s7HkUFffLN47YBWtmAtWuZqEKuLBk66qbPscKgcHzJ+dOv7b0TrN+5d3L7vydqqaqb33pUXNyZCzaW5wcapNjSbtVs5EPWcQNG1BpfVApxEHI/QuUqpIXl1L5PzcFqBLXnAvBTWZZ3CLMdCzbtljR4lmbpywoMiQBHFWKzQVToSAXqvyaC+CSqzZMWibFReFd4+pLtrdEPyLpTcAhmADSARFMNN21E1JwUGUfpVwuAoIwYIQw9srQkUveKzSIECCUCLSNF4yecHDlkuujWEcLJ+35fi07HKoJn5unh3HPaGX0ypTvrSu8zar4WPW5SOG5orbKqbrpe7m3L1dW3HHjA+HmxjlMa69rfujysqn82YWBd5JnjgdyvGFJhI/N5yYqJgrpU5a2Y3TZEr7qyOm3T1bNfaQTVe0h10Xai71zL77d+asXxm/1v7i5Kjkxfcpee2+wMPMnNcWRUwf+9qnJM5UkHPX3DlVt7Okq2gspIweG8FGCvGJHVKof8Jo7Pf8kXPAipfRmgyyOllBcjMOZY0vHwrbJTKtoOTmLpy0ocMQBCSEdLpkQXAD30n8eryjVVAKCMRVCeFpSHv9eFWMtetayoEpVEqlbwNRF85wLhJAEDKCmF7iQDHnd84BV/a/XXC2lREB91NCkLfzPhLb+ZJpcHx/5j7XZqCxMXn5jy1wmPTRfnL1o5fAMO9u7eumrF0a5ees/0+pIZkpMtJKeFV3ByOaKlpF4Yr6Yick66g9FQm276hozC6v6+t94/NnX7+x+rHFrix2Zms/nhpfd+mLLDYWfD3bjlZsaZlekZkI+jlf6K/VxOP3Wlf0RFI+vXcWHrfedPLdi6K19H9RO2UdsEB3/2bD5UOuZX86OLhmvWbd5Jzdap6bGXpkdHsfJjS3NQZ0QmZeSgwpsQLgpRAWT3NYx7rJmXr08c8lq5tjcth3bYY7tOJZjO8x0uM2ExbEjkEq9CwlchZHK8yKgCFOMNBUmaFTXiDdX6KruSa8h0kt/el7/WpRdhoddnkFtC6wanQABSC9vj5Bbk68wjpsBkkIaQd+yDd0BUpjrn+hy5v5kW9P7OjaubWwbH+l78fnhhQKtXb/58sxgdRaHsyMb4mJgXBoN4jYrD/lqnLpeP+LMPv68HBqINoYLmRyzbOFzEEaE6uGqet5xw+Ytc0a4FzrvDjZMRipe6svrtXX1r/D9N4jc8h00+bq2d3rNpivvJWOy/3Jdtjh4XTWxt//h3JqPiEvJ+wOpJeMXDow7S1du9xV8504maqrtj4cHxp/+Abnp4ZatOx84Hv7C3sffmefv6ejoDoFuCAmq9VK6GXghvEpPx2FCMMdxuG0zh3HbZrbDHCZthzlMOIy7/3JhO8LhksFi/TogwAgRTAnGlIBK1OqUGDrRderTqaFRTdcWp3791p+SwN4N1aRnfl3lQ1wiwBgJgVW0K4XwWrMBuZaWKHAEbhwupSBRH6sMMmxUNkdH/rBiJLh0Kfi7nEKhcWr+i2bbq5EF+8bOfDE4mCpMpxo2TtIfV0ZXRIKVg8MwnJi6PDmVSiTmJ0Zai+/oYibbfPliYnnOt6GhzampoJUxIxTu2Lg+PZmdmVxIYHwxE7Gs1Pu1VP42Mzp6uTjhP3PH7b+IrDDH9sjDpH9iZcKZGsgfb8vWd0yMP/r68/7awytiDl65qmb9+gNPPfNoPk4K+HQowUaGaqzRhvyO6rm5uxf6P5uNO/Hk+5c2djXoGDkOV5WfTDDhcM5sZjsOc7jtMMtyLIfZNrO5dLhwGGcCcSa4kEwgziWXnAvpcKkKplT7CSGYENAo9SmWTCMapbqmaZRoOtY1qgrSqEbpNcK7SkFLsixJ9Oqu5tK7SrZUSomQ9HKqoFCVC3YwxsoOK7yAMQD4MW/SknhhBCZziYPT/KHPBgPdtskLfb3RomyqXnLPubxGckaTOYDnTy7od7H2Gg7F147PjgwWMzO/scw5QB0bWqbvX9p75txaK//iq8fyl9F9d7xvZOSdU22+jpt31HasGEL5z548OTg99AdL6353dSPiEwNVgR+eh4vaHbRnbU3fBDl06IUL08uuu34NWfvmMfvYkf50y7S25lSTcUFYhealLbiz7qI/29HlX9UReHI2VwgFvhZNsbefyE1DdhKEljOwlu1qPmv6620riIscuG1hq1A0C3nLYZbNbYfZTNiOq4VMABOgMkil/JqaMiUxNgjSCKGE6JToOtU0rFOq61RTfUiUKNZMhe+EuuVphBBaYmhLQv2tbKTn4EsvuNatei9SAytKPVtYghTuKASvnkFKwEgCilLZ0zBn2EX7TLHw+P6LNSs6Gq4HrqfS47l02pcVOtaqaBSNJ+zcIMRWT9f7Th0bva3Q+NzpN1dU92eRk6zRe3Z04ptqVrXH1o+13fOCffDSpRihuStTS3D1sW89993LZz/yuU+K5vrzJ5JLBlO7btgSjsQOpZyv4+DLq7rs2J0wWowVWk+syoxEQtUNUTGZG6Szozf7z1ZN/qXRvzObH3m5KpvQXz76lLjPeO5TD2iJ3ov7L538ufPlvXIqUDmhVw80tuSoJOu1d9YEhs9Nrjw/1VQpm5rbZu3NiflEwDqj8SnbYY4A5kpRcu4Wg6ncgwq6iQrQXXaMGBqlGtFVAZPmiUuVnnmFooQSTBACrLAQwYRKWeo9XkRi18jVC04AAcYqbkaoHLwpzsiTFWCMBCAQro1WA6pUnCXdOAxjKVpCcwHfldw4HT5Tl7OqZx75SFukcXhmvCYUiGzcnj1xMCRPyraWwNHG4UO9T38wFb5hx6sdE5vPmIa0kZ9lgQQ3hD78pU3gr0ilJqzNhYVM+KbNnTWzJ37w+Hevr924kJ56/bljN4YKG9bUfnlsnK69Vau+OQ6I+Qq1+vntgdTt3ZOH+vKX5mD7pnBrrO7Uqz+9Qb+844GOqvtuXTHZf6s+OfYWjMvuHes2PvfiU5VLa6pi1eeOjr51uLilAKMrlj299Y+vj9T/eZimxkZH4vsW9k9smyoULs6+pZuZs1lBAlLG/LRiZUU2SBJMpYK5G7cRjClBukZ1jeiUUo3ohGgapZqq/vSIM6ry8bjUxOJNrHMTSOCFeWr9qZRcZetck7jIHmAAgRFerB6UoIpz3FDfk7fbJCQBEGCMQUguBUIYkBAgkcQSQAhBkJSESoEAI6lR26BzscZpZrzUN3zxSF9NS1s/3fCVV2d9RevvdjXe0xaRy1umruTnfvqLJQfafzk8+Uq478FNPaMV+O97f/SxjviZCbq3tr6jqn5i2tT8k9H6TbOdKb52cyj6qdf/61+zJ5/VJl/1cdgSpHv6DjQG9fru4F6UKMqqyljDWmBdiQAxD7TUn0klXrKNYm1TY845Yt01VZVxhmPWYXvPrqYlMFzra5hc1nx6PJ1e//XPBltC//D/vv/ioWhqyGzb6PzpJxq18fSDvsb17RT8YUDXcQyj6YsvZNLBgHnMTA06L/lodYJUaRLW1GqESgRADKwRrPTPr1NN13TVgaRpmldAjwkq1c6rrk53xAgG7E4MQWWgxYt6EQJApTFRXtjraiTGGCRX6sRL/AUACFQaKVfKb4M7mAQ8ZIuwVJOUvGmFgvpsvYXyZHXQlCYf0Yzx1qazhhaZnz85cfHk+JSviC4dNEUhB6b1oRNvfm138dO7mhrbUq3LBicn+nc+QH73xqrjz/zorVPaQ9cba8Lo8PecOONLW7e9PeLrn+j7/T+8r7W1uuiYGibNj3zWNzw5+eqxdzAS2cr4+draz3VUb+ux/98Tv/8nV9579907Vq5aO2aRhXlx6ZlY//ligc6cq6hd6ujU99J+mAiPdyw3teW3mKi+puYpNHzA1/nRHevfe/DY6W9P7o53rf188DvvXX5o4KWDn9W6Gutj8vD43IWRucRkbevyA6ODr/Op5dnK9+gNp3zpg2yConxTTWd1RZggQYnKNBDlC93cg+b2IbnDB6kasesOykIAiLjmszQNyOOaShU/SsNALtIIZXFIyTUCAq/+cvFVHs1xFYJyP8LL77npQ4QwwkJyiZHlW31mfEmVPrFriy3PPkrznVtWfZYyh4bGb7qt+N2BVCFq/LF2YjBcPRHyT08Nzg7PkN13yq6Pst95xH9XfKV1PDp8cuvTTt0lTasJTP7xyp4/1bRXJm68887acNXIr585cnxsz/WVtZGKvGU3trQM3HXHYwPD58fTX2XtdaavILQI9XeGrd0jb4cfv3jYt2bVde9H5hjSe197Wr5V6P69PQ9DNjSitb4iLhbt85sjTYH6pXb1MrHQimO3GUs+PDwz86M3z8SjW8hM5viIeBr83d2hxhpMuJk8eGn/1LEBmLdmzr+ArX5aGEPWOlbRygIV2Gf42cqgqMRBvYoSQyMEEUKpRlxd1LCqpVDjkhU1plgml0dzy7KUXrkOz2MXS3jGLccBBFRlvSSUDS4pRzcYqyGtUritnCo2VpTdIlYCEKULIYwQlJo4AaQ0quftVcdOTHYZMtkdSR7vtbbuaIg2mGaxSPyplQxqDmmbb7kcafl84YlYBKWWbyLBpsLADF1+n6z1B7qK2dPt2Rebw1pALsMnM/u36OaO67pDbRXVAT4fjyf6Z75/7OlfXLryoTuv39PZUl/XcssHPykaG1v+6gekv3iqkAq+lggUhoYvm392XUfAmtt3ZrA4lw7FNFzfLbS+cwkcijXITDSV79i9ef1ccfLEmym9eq69q57XbTOja2kilTx1LFHd4WNR/3RfuurmN3yhzdsLsRTKf+/48elTia7xqjrt4HSub9zhEq7I/BQUsa1bVIYKbPpYok5WhW7SA6uiatigx16rpBQutbQqN7hY51eOQMuxKri59qv1SgJIFXe6YvIsLYIyfg4hLBVHKzwPKr1ZpWo6a1n+ryRfjLEQAkAiQp3Ayolh3+zs4ah18ds/bjxsrbnt5g3rJNcQHO4//+O3nx/a2HGhZcPfbu4wcsVLP/9KYWr/ts4OLZdi2wdR9/XWubm5Zw+fPHGOr1iz9JG/kme3vvH8f1y+9Fz31iXB1PMz56ybTk6Nrr3hN/PLnvvh2O6WwX+8oWFdd8f2FatP91RfuHIhSEXunewrb7Bczneg2gnqAX7T8gPW6Y+v3NXR3rNj63fenkzmilYokXjt10/0da2/acvN86n2H33r3Jrrju65fm0FhP2H9y35xb/Urvwbp77STo6bRuDsXPc7T852oqrj/a+c7koXm7ARdRIZwQBRjUofsZn89Aq7meIfXuCn89OIZXrO1SxfXqtVBZFUle/ITWFi4lnERWLV9WIlf+YKSaqKEE9G4BlD8HQXaFkl4CI/4A40KCVwlLTxYnOmlO4geFXXUZbEVRDJ3QhCQMTvq21ctm/GzNwQvL9+6xY9Zp0J/vszQ0enX7y50Zm1RtGWpv6zZ7bab326Z0l2asm5yB3x+DheEFqf1SPP1ARvGPvWqy+NHd4XMz/3vuazHfHeyZrC+YcDb4qXe08uv7en0SoOZPvGzvkg4Tiphfa1TfVycv7Vtx4z5ve3yoloenWd9fcfqRh5mb1yKfD4vNa8vfmhD9zz7IuvBfP8z/TuULO/O5SfTyZjli8RKhydfu3M0YXcDQ+vzcUib7IB++wyMUEpjrRUdZ4/GLx+Y8bQt65dUl9R/eSz364IPN/6yPzW+i194XW9/ReG2TkG45E1nZEHNhePXVzHz7cXCk4E9/mdhQxMLGjLC5a/qYJLLkEVLytb6mJL6f0gr/UFlQTj0a5lZI6QZRyiW6AggUq37dyrjCrrbi9tGUUClJXeuHqrhF96pYTyJxXzLOp9qAZPNvqMCv/O1uZYcwv7KsI3j+ZPXHg+Pzv6eo44uzfPv37yg/fzUP6V+NkjO7t2n+Cr+nKc3rlt4Nxvbnv06empwx0wo4Xr/n28abLON+kv+khifUGz+vGPfh2u9IU/sgZvKB6OH9vfBfC7K9/TOtv5/UefeKKpGOqurAW2ZlVk886NK6+cfpzcKSPLSfuFTLEw0T9RtTKaZpUpuXp6WTK3erhQ1fHeO/8xvD+RQsxkmaw1u/36HfXOoUr71/L+H9n3fmDNd38sn/4xTYz7/KuqO9r3+bH/zpHVd7SN7e+bjt22+45lW2+86/j5s69PDfT1D39me2xJ9a4zb59bmJpryDrrb2iOdS2PtlcTTcNAhBQgFiny8sgQAZTbOlQu56tYHcWaS3c8o4tUEF3ESd77ryUHEFLVJQhhxUW6gYo3ncfja68qnFG/YIzzeYQPvfxg4fqG0aUzk2f4hgGtdsWtHcs2Hzg3saKuvem2bKjyjodCYZw8vPeZ5IVLvp6PvT66cProG5uvr6+pXn7q7OViRINCMLfy4WPsDvj+s6GNS83d608fmsB9Z2H6QqJqhdVWfW+TTSYy0TH7yFO//naotk2f//0xM39ppMNiFTXVRrS6qiYMCxGI1F9JOJPfPFg4eOkx9tTUR2/t2vzZ6jUjq1rIXCaGJsStnfx0rra//7VH9pzsiV6Mp8XhmXXbzk/ndjQtu/fWj53+xpkTZ+fekhMTfbOZycPnuZwe+OU5X/XO07c9eF9V/ZK1m9ffMjHxylsv3ayPtbf5Vn3uxqFbRt96bcwx6js3LXEkEpxjiYWUAnllcHDVj/Ry3SXLW3pCybVU9q5ykW4jimJu1Gj/ctktXhEhISVWMxQQRiCF6vdDGK6x3e5nX2Xq1Q8leCA+c/S8vq5u5ZmLRz7/3q/zoYGTT+9Y9b7fOUMj0Yru+yu7p2cmRntWDw+OBHJHt+/OxMe/Kgf8d9ixM4kLvTe/73jzCt+rv/rowjN/Wuj/+ZGZ1zKX/67m1AV64y/qNhSyRZg/AYmRNy/r22pI83J4JQ5nUXG6MPmFFVWFcfTcfHYIoL033/r2xfG+TGT29XzEsLrusQ5JYp45eexI+L3LJ0003z/Q4Cxds+KGFdk5/4HDyYn4hrpjG8/M50Ze+N6mf/uVdedf/Pilad943JLLV60/dXDaSWSMvnFk5r55wtgbKN6ymetTBxf6OiurYj5/RU9Xd0vDJ0cHTv50369r9NGd69tuurXj+bcs2xGaz5AYcy4Ury3cOvMyAk7K0lEXUCrN9Wb7qdJI4bamesqqAhYJICUiaLGS7xq9FEIgjIVYnMAEni0VZS4WSqoKbk675MnV30cnZqdy1Rs3ipabEhXLfYUz+hO9Q/viZ86salr91EsbYr8Y2nDLH8T5wK9f+5Av9eX7qmvoALrzkz/rbTbNqdTZmcpiqj2Yq08mD518tQLhra3bz7/tm2EXVwt0XiArsgJyIzBbiF+JdtRZ3a1zlRl4f5gdn87+bJ5IGhlDzv1Hay5fwOMO6b6BLuC+qYF6Z8UWnkvke3+69tErkeiwPnEkeu8Hm6Kv476DuYErm/3ZGj4093jhDafiSWs8bk1+eXTv3akHA1XRHx88UrRqK2iQ5WlXbUuU6ksrxv7mQZYYnD/95r+PnN1rrbqhbumaQFVNTds60Oue+c2jP3thb2PQP5OsXLM0XxXyM+aWzquzVt6llG5m2atX8WCpULPeXUAkVfetO5u6RMIiJCUFQEJ4WgiAvDJOFX0izxyU5O11gsnSH0t1C1dvCCQBHOaEO3tuuWHdsjXGttjDgbn6iZP/+KbIRY+9+nB97cras3nL/8ILF1fCvctk4a5KNH+Un1xunKndNDNmAeHhbOqPHllvDkbJL0++Z+3pJbetmD/MnnzaftZIhSvmekhwMjNgWuM1EmXON4SX6K0N2Tfipk+HYdu5YtNvipWAtf328E+d3ARY40cHER34w0jfhQ2feLFtM8/O1Z+a/9TugHb/JjAv8DMn2NgJWBPkxrLX87t9oVOzM+ZM71FsJ1YZVzY9/0qmpRUuXUpZjBoV/lrfd39XXzo//tkfZh/r63z4Y3cFf/FTGLp49lj6B0/u3bF108pNWyrqm+97zyO/No1XXn61KobGFnL1TbUcSySuArFXpadKoYOKNMViZxBSBbZuD7yrM7jUzuBtiWsP3ijPk5S0rcwCX7WbRNm0bQCQQpTxvEJgHOretGfFjkikChCWQGEiWSfHv7Bd33W31l6fh5g88uL0yOFNH25fdXx8fOvGaJDtL4jaT9QVf7Cr9mJvxaZEssvnu1RZ99RcLDdv/OENwYIzfCQ9IqIriokByZPE7o9ScwzId1OTy6dCN7frSb/4UdEnKMVBEc/h22XLBTR6hkwNSViY41EEibkUXfgvWPlRWb/mnHNYZkLJaS7XbA6cfUqcKqZvfPjNW37/b8eicOXf7fwZgYq3143++EN1NXNnTx27YHL9rBPc3FS/647r18TOBWuufHhTzu65HrXf3HTj9GjLldu10C//+sC5S0PrTp6/6fY7Wpcuu/3OO+OW/mZ463O2s97JYYyuSml4yuCZTYCrni3LcQFgF86WJ0sUaFkUgSdO8J5Qg/6Q6vVTzIKExbEzgABJEOWAq/TNwK1kAyRBSO5r7GpetkMLRIFqPi2AZ4+R819HlnzkMxtTLPTx5O/wmWTv4f93b33DvTdl1xYSOPLLgBxJPaG13609IZM/mF+TJdt+9dOjI0E0VHPbFL355VfssJytfSC3TQQunDw9kZzGMr3Rji6VVXv99GwiWYGsMMUjNgZN10PkB4HZM8n5Xmde43wpJlo0YADfm3esheFbzv1o7dLtf7x1ueavkg3B7MZ1Np6vm+nNv/Hm6emmpRUrvnLbzsH/uTJAL/7uPZnKSNHeuodd94Gbv/uru99YaI1X1r+eHvjp6Y6vdt61y97raHMpp2X1rhdfPnH0eH/RBNuxj504MzM7f+c997YvX7Fqzep3jk+8MmTeGNRvWhouukyd6ykXKQKlDFdrTKnJVCoPiZE7lvEq/OupealdF3kSVbUmbqMLUoSBxIKrgxyYVENWZYmPKDewJR+sZpkZoUqGUUg3CODCzPno2b+0T06w7iWGY/9mf+7RrR3gi4nIqtVjF+L9q332eG13avBE2+sS3cWLPaT1r+Qv32oNjDfd8P9++KtGs2ByX+v6NWtv2f7g9bUHxwq9/xX4QP/4xqh9bPxEOFPcZEROcnt4iu/aUmXM5mfGE3MieNFfGIniDWGcThAOldva20fnxychsayIH6bF5H31A3ahfmyf7/mg5ssYD60rTFaPvT5y/tQv7tj44OYlTU3mxZbU1Os/wrH1xbW1nZP+Oy72FI4f/JIRH2ibDXXfvrk4T6QdObb0k08+c/bjxs8tA5pWdNRODuYmc5Ti8ampF46+fYvfqAtV3szPv9Q39Exs5bbWZUTTlD5hKAOS5Zkr8Io0vYC0hDkRuCW4Krpw36PiFc6FkFSqs5W8yUBQVsOHAKl+UcoZFQy4cCQUgQiEpHueyVVFYljxDC4IFpIaAV+wkE5Mjg77CuMVOevgZTwdaL171Q0td3WsFftOJy9XbZg8+tTI7/3qv0JaeufQlscqPkpuOfO77T3Wk3MHe9nLl58o3FeRujETfeLknQ3L1m+tEWbtP/3L6/uK2HRq7unKvke2PBa/suKObZVa5ZnJiQv8xIf+ZGcDzSf3H/rRs+mv9XIZpbs3+vtG7JNztEWjzT7thkd8XVOF4mTnVzKbXpqa+t65wfhCikxHN7MdM8vfe+X9Kz4y/9PNl05P/OQs+UBgif2+uq4sXpvw15kNzlD+lpsPXDn5woUrq7vI7X/+yWN9ky9PBa+cT28eeCZ2u/aFP/gc2BMrK4LfeC4+NHhFhP2XmoKBsfN3tq7fsXnj/PhIbWEcy2UuclSGzUM3boqqVObp9caUCxypWgCPTHBtpnD7+DgXknFaknzpRYtmXQoiBBFc4w52bMk5AawhwjF11Lw+5FlwUNYCAQAIKaQIdaytb189fvns0TfeGhwaW7JurdnwHvs9t3WtvC7V3EHiY9Vvv9p64VJgNAOUn6/INhnhf5y644M34S/f2MbP9skqdHrW93hyoHb48eLN7Y2HrN1OeubQiYZ77/vQTc4j/lm/X19XpQ2/cIX0WnxgAJHa+3aE72kpTp7dj1dWN+257m+aXt/wSv57F0P9pNKgdqiQXmOO3/ShtljzXBD3vTPXf2zAzi3k36Di9i9vrt+9fvrkY2ntYW3Ve3LnhnzdT/bFe8j52KqOYMOtGwPLw/nJvprk24NwwyqcM0LJ1Xd9LF9gb8wa+zNR+tZzq1r21Wpts2d/c/Tk4P5j+sc+8LEf/vpX5/t6Ky+OztlizA6tXrEqGokkk7OMOYauudbNlWVJWuUkTTkdK0o11yDBHaULpVnvUgguHSYYdxxOVTfZNXYYuXVbEguOOQNmA7OFEAgQRhSBqtVD0qURQFHvKh4VgmuVda1rb0jHZ5/8fz84eupcz7ZNLUs6fW1dHYTMLcQPnzkCjv2xhs2yfpNOESa0ePLi9x/7zWZneo2+IZMVVRtE0TjXHjAa93Z+7WITDLPTiYZD88MHJvrvXWf8/RdrITGVnzxoaS0dX9jVn7+Qqd+dzuZC1neLg8yoNfjzE5emLjZuC951C97akPzwKUpzVR8j0V3bzPoVI+mnLKPnNs0/Vz98ePfy6O5dq+YmBsjeX+bSM1Vr+jpqC/tSm8+tndz1hZbhN58bTT4XOnSsa7aLtrV0tLDq6kPrP2Bd3JeezY0ePOef1dpb5gY6zWePn0+8dWFhPu+fTmrSclpXTH78I49895vf4hO5uF04bB22stmmmtqxiUQul/f5A6DGSgvhxotqzT0MUxKmdPvnJbjHHgkkBEgBqoNP0QjSPe5BjZ1T/RauWgrpChZhLLnba8E5o2rOklTtkAJJgdzJad4OUPOh3cZmUdG6FHP0+jNPj2Zzn/jLP1m3eh0Qouk6SOIPxFYvqQwFg4bfhwiRTFbmmHPIPt9U0bS5ncnOv/7qqY/dlNp6x45Hvly7ZMNb49895BwP3Y+a62t3jrLswfPH3nwStVN+7mhxKtD7yY1oXW3U94lPTJ498/zXnh4bKnzqunqkIV9gIXUKvXrZaQjFPjPR/GImmQuGo9yQiZm+vpTTdc/ltcu3P/e9vwive+fxi/04vyycDVqW78Qv2OZd9Q1r3nrjUd/or41sNp0L3Ky1yh8fvJxKjH/wfRt3rl1y/faaRt8//f3T+4sr7OU33+07+dV/aXvlBxc/+ij+on/N6ah9gA+/9MqLf/hnX3rgnvuefvwJXnQGRoZaaqIP3nlvRzUxEAjOJOcghBpkpgTm1edKBMDd/kwom1/oVhOBlFhKpZgutQpSIsCYECwkFhS8rn7vTQhKR18hYEIqZk9BKQbAkeTgkYaeOiPXJQsESCLsC1fNDPcNXD734HsfbOleceztg9MTU6Yjw3pxe+XM48eK4wVcHQt1VNY8tOMmPGxNJg7//eO/d+H0sS++rR+s25R+5fwn4wuddzdsf+/NncuOP/PzgX84U1gRn9q8QCJXgs0XbqqJVexIz/34qW89/9w74WVfvDjYd8g+PhL76Lc27B1+7UIvlTu+3IKHZ97aJ2OZyO0Q2b6iE963+hRhjXjP3D2JlOPX65ajtge++ZtvNAWno7ube3UrYImJd4ZD6eeX3rL97YH6t944/ef3fyF46wYKvjO/+M/XIwMfuOvvFhLj//Q3f/eebv6fq4wnf/r6qbGzNR2OnN9975bAJ05adR3LdzZXHH05eXl0cv+rr9xy172njh0dPxWvDvtXtzc5diGTzlhmVUgKhISacVKi171xIlIKid2mMyRAYtdKgnKw7mAqQoRQaAoBAOYCYQ6SSCGodKdBusJRQ7JADYIE4BLZCEtMKBYgBceIYyzAzXZK7yTHEguPEQJMAKHMgl4HD55+2X700W9MTfbnU9mobv/L/ZnVw8V/fNs474RjOlq/897gK6OvDO/d+e09BZb9xtzaAxUr/F21T89M/uq5iVXnc1+5w75726bPfKm9+fjFx59PZdJNG1auiaBQMj0nNlTOnl+prfjc6BXt9TceTX18a+XajU0Hn5udL1wCDN8d69kRvu7OFq1xQzIXqqraNZYZHGkLah07l93Qmhq6ONJ7qWX3hozd9dnw7IXTU99NW6c1nUfW6WZ2/9CT8fV5u6rq4PjlzhctEal7qWLFb1Bq+9RYZC556XjmpSkWLcZtq7jGnowW6U//5qlPfrb6Dx5ivZ3LOnbdsz85+fYLLx05/M62bTu2rF9z6vxph/P49LQh2fzseCFXWy0YCAGSuyNGJEIA2E1CqtmRi+ks5CUgvTyzEBhJISQQ4Z7aKJGUQlUFckbduvXSPgFQB35yRdAK4BKYal1QczQwlhhj9QBcjlGWByogx/v7Ro51bep4/xSfe/zVt3C4UFdd+ec7RzdD8Ultg/jUksBvTtiZwrPnTryeePmLP/sg1DZ87FD1s32N+OwRqXWT0fSNscaty5c8/bNHk2+du+nBZXft3LW1ZfD7rxemVrWeIVUbdt2nhQLbG9qc/rZfv/VvY/wF/cjMyPGjT+qjH7yepi8xtnJl81+8/wOsgAyfBA3BzMyC/fXz1sFXnrt75031lRVQnZiYnT4yxZuqtc9d333n3isvxgOJNm3l+zePXTplVuHAw3f/S8qe+JfHr+96+KFH/uLKK499/uN//LNb3v/T3Z86ePKdHw0ez/fUTU6PsWxuZNjYUoyuf+h6euRAKnPD+nWrD715IJmzhy4PgFUgtDpEa/oGRoqpubrKmFkoCMcB12UuIlj3/EqEyFUUvBKqNyVRHQjBJefAHS64O8ucM+bYzLJs27K9liPs4ikP2Hh+2HWmhCOEkCrowohgVZ+geoyF9/EYQEoZlPbBl5995Z18d/0ehCIpfyEXW/aptedub83+6CfwxvuXiq2r5MGzEC/2sulYAArJ2R8PbH32ZD289HPR9+PW8RV7rv8rnwjAmbF/iK7FT03+8XNP3PK+lo9vre6JBP/zyv5AfDqom1vufHD91u5/fua/WeWZ1mB4/srJdU2hj391a4wdrbmSnpwfnHn7GaOpbiaewfSmybGm2eorI23LLz2xPzA517NxD/UvGb64f4EM/cP5+BsTqUlT5AoJfYZ0r6zrWVr/0j/+8PSzB2lz3fLKuqH4lZSc/fCHP8x/kPnVEy/+/obbH/7Epx9aeN/5i+eeXTvy47dfsizxnUPRPwgN58dsY2Wmpa6SIuHTpJManZhZcLivMbRhWQS1tEBtUzem0o0AMXInwyuJqdO+1HkMLpngcmtusCC4ZFwKIRzhqP4HxmyH2w63bOY4jmU5pmlRrk4ZA6wiDm+0nIeR1fQHRd0idy6yG9gqG6H8JQBIySWEDbYpMnBifFRn1rGhK8mcLXquEy1bOqoGe0dX/nByMPvsCXbw0t/FzO1bA4fH7bdx7dP75lJ1B1cuJNZfZzU+8LGItW5uEj398r+urs879/9+b7hybB4t788RPbzlpXN/vsy5Z4f9o59OZo2K2269ZfsN7SePPXt/3bIxO/vmXZ/8+OvxG/uPbKmFFRWpQlaSQPTY24H48I7esaGTqbMfvfOlf7+1IO3i8Yv+qvfd2/rJrjffbEv88mcDNTntT28R3/qNPD3Y+8S+2Ja1PJ8PDc4EJuZy/jqtjj73xqP37fmQJNq3Emde2XvuU+MnP/x7n1235aEl75yORgL//dxje0/OHz4rAkHjg5XvHDlzPpVNR9buHss5EYIjfpws5gI1TY2RjBYIWjwLEpTo1Aq7/R6qgg8TjAkgNeLVrccVgjHH4d74LNt2bMuxTNuyLNN2ihYvWnbRZgWTFUyTCsEQwiBVygbAnczpJsigTPNLPfllU8URQlh4b5BMNKLZsH9wlZE6wo0lMeOKzxgcPqkPHT/C/qDQ/P7a5p/NTD0emclXbY92rmnujMYTR9KZji17tmx9iErMazTinxhqT0GchVInDL7T35Lb8BCgW146/53gXN8b47l7H4qhNDtzcebxf/96Q0Pd2OTMqmDDH/fc+28DT6Q07ZkVD795dHT1xafvXB5d2169gTdHfbe/MRg/Mv1okp+rHuNVt20Vc+aZ0weOGmc/deu6rZv3vPbCIZ2fybRV5FY39IzTJecbRy+fCk9ad9/bfd+W8LcfHdt37sz4zHgmP1hIj8RigWlA/z55+MTXJj7/yc/b/Ve6dq7eU1x47JkXzUCF32L/8o9fj5t5EqhMr7lvKKrdNfta1cDsbCqRLlSk5scqKyzQiXTnHrlQwzt0lrq1OrDYIs8dW43VcizbcRzbsh3LMS3btOxi0S6adtF0cqaTt5yC7eRNXrQZ5YJjJBAgoQ6ecucg4xIli71D/Mr6j1zqQNl8j46XzSLfjSgU7HVtsGPWwdKJhipyNqv0ySVLNBzyh0RPISsDVfo/H144emy4ipAfxW35i0cjEXrHQx+cmZycGB/TA5HujR1Vp+7rP/cdOLeP0eZwdcuZOz8SbzQmnj5w/cEz35zLPDNq08SFP/jIJ6ampnWh3fPc16pWNN++cOa1rtXmtrvj+y6Nt26o1qvQeAOrCZ+b/35anKgM+wqdf3/g6K7k0JWD1sj+sB5PWcGjF+Kzx8zm1ANVzVNdbZVVsQ21d+ozz93zyW0Lw6cee/nN5s7abz+w0UxPW87w9HxlWBeD8VTeLOxLDe375z9CVH6683duv/f+N45eHIrt8KH8ismDq8PwxkI2MTwwumr90GzGZ+eETMXNOsZ8fp1U1VRiTZOAQGL3EFAhheTluRXBheCcOTZzbGY5pmXZpm2aVqFgFkw7X7QLpl20nILpFB1mObzIhM2Ew6UQQN3ZqhhjIQG7A4SgpJcAQgqCiPSIxDLq3/1BGAshCPBOarHecbO+UNWE718ln5iquDhFgxq//6OP7Lp39/ED79T1HL+xolqamZl5eMKMOcLh4YBOYs8891ZjW9fajZt6enoKRefK+fRDm0L740YwvV888Pvj4B8oLrswOPFgsL4h9MDLh385v2W3kSV8+AWKwJIWr6pZctvfXR6/VHPk+VG+um3dZ/qnElMzB977/rbWLcVP/V7LoRea+idnXz3ykv/GFbXdm2MX8x2HXlpx++cn2zdMtf6X8Zv/vLLvcHRw9sLlwxfPvdlWS2956K+37/j83qer77sO71qRn7kyWSho//ro0PnR3MbVO5c2rP/Vvp8siGnExavPvdzZuezGW+++Ml5bqOrq8fNvhk59bP/k3olTlQ0V+WwyYnDDTM4VRNEKYmEGI53I0Fk+KRwGbnmIwh8SpOQgJRecMcd2bMu2imbRtIqFYrZgFYp2vmDnLce0maVmogtFDgFG2K/RkI8ShKgazSCEAKzmHmHkMQpu/IqgdGKX9Kr9VAm9YiAUkcgxuVLEdhGbqZpbmhKdN69vfXF+9lLGH/bV1FSPzyWaVkVXr705XPOJfGr+yuE3Xn/6udP9s6s/9CfpmuuPvfLqz3749KpjJ1etXtHS0dbSXd/UtfvmO1on4unXctHMr3/5OefSby6MDVRF9Ls/ev99dz386Y/MnbtUkc6np/r+54mRIiPdgeYDAxf6D//jth3v277zS796+tHpiTemJgd+57OfuPvDDzWg9DsH45cn7b/9zsc3LNt916fu+MjKPefN2VyoJhrTrGQi8+gUTRSrwgGrmJ6bT/e/uXftrl0f/p3fmT77wuf+7NvziXTB9vdNk/mMc9N1jyyJbd/79lvx7IS/Ihp9eOeb833bVvS8c/jX1XMdqwrxc0Pjn9TpxPiJdKYfKklHdVAg53JqwgYOToEjCpE6O5ezcinBuXTH7wqujk/l0nEc27LMopUrmoWinS9aRdPKW9xmwuGceyNTdUr8Pl2jVCNEo+6pOoqxU7ZSCgCMFscnl5XllgrAFutOrsrOKKsr5aSvAtbGpicSwYmTO64vBDLTzZTmLJ7sO9IZcSLLd/sb12LNCNW11y/fvPz629/4wX9OUEG4U50YC1q9vlyABiux5pOADMOoW7rKXxV/6R++8ZnMvvem8gtZsS+iTW9tvXPrPcmFiXT98HX37Jg+N/WrvfLS1Mz+fY+h+ZlwMLyrY8/FixMzs4eZyPcPjfzbP/z768+9cPuePe954AuvPxs/MfjIyWg8Egw9Emv8YEP4hlT6+YVjbwTTq5esq62qef3lV+fmzD2rN3w8sKHwo1eKD+/R6rdHuuK/2v8LmzmUitpIc1ft0tHeiaSZAoAcZ5GNKwoh38SBqVon/WktR3Ds6FRjU60dIKmmMEESpGDXNTstlQMd1WEsw5LopLLByWUTU1PmwrxUEyYZszm3HW45rGjZBcsxbcc0bZsLhwkp1WGAxG9QXaO6RjWq6bpGKdEp0TSNqsMa1aFVSudUukVNRweEAAiUSCI3/w2lROvVZb5SwTNFEGKCExnz+VFnR/elZAZVxapy6VS8v//p4clC8KhDY9TwR2PRDTfu3n79rQ995buP/cvf50ZmO6IXvvMp/fLRty9Pb6xct6IiHFERbaGy4fKK229Lnh8rjh2i/A///R9qrt/ae/zI8bfe6D1zuL1ife/ZvukExxjvPfo/WIqaSLiiueHI5ATB09HqjkJmtmjmjh4+Mnyp//c+vGnFijWVR9eSjdf/qnLji+/MXV+8/Omt+ntu3b62reKH3/6fIXapqTJGHfv9m27qqelOPHPkN+i52j3b99xxm+TyR794zLLtntaNAb36zMUnTZLWNEPmzfjJy+1rup5/6qmRoaF/1yZX2cE/Rpv2p8dEI18aC4wnc4zadVVGe5sPqI8jIRE1ItV6rcWmZsb7hvKptHsOD2cWE7YA5p68AxQTjeKQT/dp1PAZhqbpOtENnXjnNKrzICgmGsGYuEdauXEnUiyvkG6rrZtuWzzspsQyIO/IqVILPoCX18YISWk5xaEJMTRENmyNTk+120Ozj5+YqfQlK4z5Jds2t67Y3Lli6dKVa7htZYvOhtvuPv2f3+7prArXGuFk7/4nfsmBrd+6JVZZFfL7Z2x01rfyT0bavnDD+rncQR2hs4cO7X/5pWhl5d0f/J3LieKZhFkRO1GMxzUidUJ0O5M88TU5xh+8/4/i2fA7b/xd0Z72ETKTnOsfOXTXndff8dyWD8joz95483+Cxpsmvq5vfPOqtjXrN/z1V7783//2X/OT4+3tbd976elUx9qsyP762TOf2by0rnvpAx94bypb+OUTj0/MjTz3wnMHRp8gPuqzNY2j3p/vG8dv5KbnDZ8xwHJSmifp0Bkj3W7QqF/HOBSlBSPoJ6GgkJQhBMGgPxgNVYlg21LrysjIlQlmWapWGbmy0YIGNTRKNc1nUEOjhqFruttapk5/QAQTjCWAGrKMcUkIkkpvFJ1UeEgIwOBGRV6dyVVtKqWQ1BuqsMgJgRRS1tXUQEHMksTa65o+MMfPr7s+sPfI/OjoTJ71SLbrxu2SBMYH+7Op5MWTZ6Ynp2ZjTeOD5wF36T566Njp5072bl2/tqejtaW+9uzym8yFimQqOc1D7/vwI3/5B39q2/k77739urvvj8SiUsAN7duXbR898PrBA2+9NTo68YWbtS+uPvRfuTXxys2HTu1LZdMECTBwAOl5OTk9c27jam37+qXpf/2fpyb2feRP/3Tbhk1BDYNgnUuX/sVX/ubFXz+ZS2SOj099beDIbCpRtNIzfRe3XL/HKeY+/ukPT0xP7j9w8IdvXgQqAsFoZaSiUMxzUy8W0gahphABrMV96B/llWq/tpVGBOMG4lIAR7qh+bgDWm1j48r1vkAwJGV1Y3vr+i2puURy5Ipf13yapulU13RDnXxLsTrVSg1Zxt5AO0zcUz2uqtHzZqCAgPLh4eCVFiGBBMZ4sf5agjtjGS3qKy47Xkl61RJIIsuyNi/T12xaroUDDUFm52oShd2vWAdDTCzZefO//tXfrt60uaWzs2gxxlGcRMa2PRA68QpyrkhTcA6W5GNjk7RonT3Ze6zqDnG5T8r5pxfWvCdm17U0Xzp9vEJHlVXVBCMpJMH+1p6uB1ubd9606+grb25qPoQCuYblD56bLkT5qb/8aOvQeP7FAxNCx0dPHY5GUWWn75e/7Ht17jxn6Zg5vWRJj7CKC7MTacdqbOt48MMP//ff/4NZzIPu14PBbDF/8p3jd3wwG4pW0Fb8+c9/cmJsbHxqEktq5fP+5mps2wtOkUtRpxuObYU13ZHc5KwqGEEE5jO5qUyhvSJUVRCBCiQwql62LhyIOaapIVxVUdWzbBVh9uhRXaQWdNcrahqhCLtHH6tzIiihiGDvnEAkEZZSSC7dQyg5V5GqkjCGUgmugs0AXOXCvDO2lOJKr+CzNGFVqNO7+OIMXYwQRpDNpHLZpOoopRqpq/atadMbYgiSc6++/JpTUT+bzDa1d2y/4Yb3fOj9yz/2ezlRR6YGkGDFgjARBiGLlrlx57br7r+XZggc+rmxZuXC6g995yfPEsGCkeqzx06KbCIYiWoa1aiua0YgGOjo6Xzwkx8ILP/IW7m7Cqtvy8xfiBnn//qvP/6PX9hQHeR5JoamJg+fPcei5Clr4KQvoWvavhdfG+k9H6usrq1vys7N9p89VdXa/uHPfGxJXQRxplFq+IyzfUMvP/m4lMLwh5avWfXJT37U0HQMEoBPJxZMALAKmWJREC1gGHXRiEGIEDxezGhEEtAx1WyBLFtIxjKp9MHjvQfefPvs24cTY5MGoTW19Z2r1i7ZuqOyuTUci4Wi0UAkYoQjvlDYFwz7giE9EMS6DzRDUp0BsRiYjrRsbjnCcphl26bJLEuYFrdt4XDJuMDCOzBIqjk3TEgB7olBi0UQLiwSslRkpAImlSIvY40RACZHJnjG1gEE0+okrVhaPfvxu1s3LWscPH2iqas5trTnhaeeTSzMkYqaK6hy9O2TS+gQQjie575Y9Zc+s727Uew9eGT3jo1fqh793J2NN9x4CznxaoM/ly3kbadw/PLIT3/4k8TMtOHz64ahzvkyDH+gIkaW3iB3fS5cY9bEhvqujJw8m2vdvPNDN9VzLm3gl/v62Pal+u3rcqZDEZ2ajf/TX/39YO/5cLSytWvZwNkzh155sWvzjgcfvreKCmHbJrfzTHznuz868NLzlBAjEL7htj1333Gb4NxHKGHizxp3fqv2pr9f43xqbTHqC9hOsbOutj4cLTA7bZqm49QG/eGg4adSmvn0QuHt1w5+/5vfe/Tvvnnmlbcd0wz6A7U1Da0r1jasXW9UVRmBoOELEMOHDB9ouoOILaTFZdFhBcspmHbBcvKmnTdt03QchzMm3WEnXDJ1RIUA6lUGSQCEAHEMpXGrJVq+vDp+sUYTlXRXylLJNsj2lrrJi9aVBVxZG7Orb6SJYaoVl/dULL8QP3oJv/OLx2o7lwxe7hsZ7K/58OdfTK6E8+9UruGQnDk2Je99/wOaPz2fODU00/fjH/30wfvuWnLrjbaE++oa2N1fKBTMZx79Wd/w6M9+8XTfhSt333/X5t07YzXVlGrq5GlMNGoY0epiXe22XVu1/MwsRHZ97JFNr5w40Bd35tfe+tJkxfsevrNx3wv+uHgygfoGx//pr7/y5X/+u/r2zu233vLL73xfM4Ib7rz3sxPz9rTv0pGTF3nykp37l6/9WyQWWbP9+lCs6uEPvf/C+QuXBgaXYvzB2tXm5Mmbd/tnouabQ7FwqCKPjeaq6sScNDDlVAaCvlBIx7hom/ZIFhD4dImydvHC+QvdExubDMNH9VAwVlnXZufz2alJEIKDKHUTgZAcXLIBvOYFhBEGj/AFUFMoMIAQILGkjDFCiAdPJQgECBGEOOfSnWSAVV68fIqXdIObRUBU+nusIrh7VVsq6xRwM0iDmuOIGoDJxq0rCwVxZmjmQv/FKgKDJ04e2ZDI20mYP3V0jOw171z+Jx957rX9A9PJqTjza/Tll9+4cP7yBx66f9Pm9cFwhDksOZe44/736s+/1Dc+crH/yvQ3v/fWi3tvuef29bt2VDU0CI44YxgjSpBPq6+t2kWtZCHttG2//b07L/5bfBd/318eP3q09fJvvnxfoMGcS/4SnpsJn7zQ/89f/uqffeWvq+sbb73/7l//8OcdXX92x8e/qF1MQGwN658eGxt/iox945/+84//VmvqXlbb3Pje++796n/8ZzcOBvVgvDhdExLxeTabzi04xZQpNi1fFjQMJz/bEItoAR9BAiTKWfrR6fRUYSZISAxrYnQwsPfVVVs3hgKx8ank/JUpYZoUEMG2kiN2j+xeLDYBUEllwIgAIInU8cCqLVqVnyDwptPLEsuuRCLUlCqXSnJ/PJMsSpUs5dopvdI0CUL3EdPmjlYjE72oOCTspJ2drFl785677vzD969cv6xO2CxQVx9u32SePLmp1bn5+u2X4syoqNm88v6xIbJm3YbVq1cGdTo0OPhf//2946fPabrPF/D5Q8FwKNxcX706ppm2gwzf1NTsT/77B//6p39z6PmXkOT+gF/TNEqophmEGKSiuVjUIbTynrtXhxeG7LPHHrz8/YfGfja9IAK3rXtkEzeYIwg6drbv+1//diGf6VyxYuOmdUfffCsdhqMHfvhG/1vTMF/rozt8dVeGpn/yne8lpoaZZJu2bexpa9sYbkYmv0ySs1OZ/Ue1eYtNpHKc2wRsbBhZKZhjE0wwCOD8zKyTYroBeDadGEjGL0yNvfj0Cz/+5ve//e2f/Md3fv3CG5dyKBZo7JBGqGDZtm1b6uQD4fYXKWmpblkp1RgE4jI7yJ1dqcoZsBdkKEoACYkAkJBScPe8RE+WpYrOsoYX9zdRUk23nR4hTHQpANk5VpjLjx0rzA5zR/povqG9bl2jFiqkP3bz8hucwV3oyJ++Z9UnPvOJ2++6MQSkmO/hxubx2WxDZWRNY01dQCsWCt/45ndee+mVscHhdGJeCFlZEfyLB6K3NRTi2ZzQfZrPNzg48o2v/fsvv/Etu5DzB4KUUoQJ1gNUDzASEqiybeWGpbmz6Lufu7ny1N1fXFmfGjWzPe1NpEoD03RyOPDci6++/NivCMUbdm1Pz06nmHA2d3z13K/v7f3Ve1Mv//7UvqxTOHbizMzYeCQSrW6o3rB65aHU8KMXXvgbc+a5E+s+0PDZLf46jkTBsY5duHBpaKBos3TRIZgEdNQfLzzTO245VkU4GvGHuBCJfGE0sXCpr7//9NHcQp8ZSjY0+tdu3dCwYiX2B4QAQAQBRnKxTEBFHF71rar7QxKwRFhI5I5pZLJUZu11QHhmV3gHrytFBelSQsKdc7wo0ZKCuiBZCoQQ0XRhJVihUMg48xM8ma+X+bkAnya6L+w37lhbe/P2zq919/7zPczEfmQEqztWdqxf39Hj3HNrcHVLuL214cH7b1zbFAnpetFiP/rJz/Y99dzUlaH+S5cimr39xu57G6xkMjE0O2sEQ12dXTZHTz72mx9+7V/tQt4fCFFNF4gKiQXohRwrsMo19TWdjcYgbeD62s7rGnxvv1xM2AvZZKJ1Z3znH6WE/tijv5geGgxXVSOMDr22t7JrdVNDRVGafeZCgmWDmmBW8Z23DxmGEQyF2lvrL0XtfzBPT2umP9zY3da+Pe/HmPg0I2VxizEEQDHxGT6fzxjjkbQFmWzS5qw6XFETjgQM3WYsUcxn7AKjbMLIvDPbK4vFpoaWmtYOMHRFhoN7YIvbZO81FpXMqKodk5yLUj6Uesi01Opw1Wnc0h05RABJcMuIpJASvKEoJUEu/kiQIB1bOmaCYsfBDSxESc8DRHDpr7yYrjubHGuorC2mU8H6luUrltgXJ9789Y/rlm1taG3ackvdyu23FpObic/IJdPHjp/RJs5oCBfzuXO9F+anpyZm5u/aGIRCfTpDhETZQjZtmo5pEkIEhueee0XTjd/5q780/CHJbLOYFUICijmRHXd9aGFbe/sxPHfs9P7tza2nju97ejI859i6My9QKhyJxGeGD+59+c6HP1hdVXHqjde6Gt5LdE3wAgborvRHfcAK5szpg3PjYzV1tfHZeM4salRHujY9OQHOQJNFIyFfopBL5fMUg5RYgmAOc6LVdSuWd+e1gcFLC+mFhqq6ZY0tuWJmfGE+WTTzdhHSXIzjQW5elKipMhBEmlVbn52ZUgAHPOmU+viElMSN/t3Jf0IILtx+FTdBBmVwxpPiYl8KSOGe1ISx9Ir2AEDNShFCqHqWUj8iAuk4LJMvVre2MGYGtaCI1OPUOwkegPbdFW3ZJ7//diGVu+nO+bb1qzes64n2j3zrG/9qVDY1tNTX1VRsvOkm3fAjPh8KhyoDRjFTsJltOvb07DRI0tVeB8XMQlFITQcpiqZJ1EQODkTTn336hWgs+vDvf94XCDlWYX52MmzbFXUttZt2VDTVfvetx9/+zvFbqwo/PxnICKiKhLS5C2LfmSqd4wCZH7hoF9INLQ29h8yCI0ORqIAMgBb1aW2VRIaxYxVe/Z9/Q5XNh/cf0IlWtO0sM0cCOagJ1I/67ELB4Tzk8wU0qoGTzhULpjVTiBSo0VLfNDU1nitk0rq/o6a6pb6qNhaL58y+mYlcLqNPJ3jemXSKHVt76ro3+kOVY8zJzcwQjKQEJNySAYzUWHWpaPWyFAkCjIUQQiBvxKIUZU0TXsOgK1uBgChsi4R75qMXf4J7JqsiHcrCGQk4nbWEk+EYB6tq+s6/HalOzs3JvuHX/FHKGjseOz6SMXOfau8M10e6umq7a8mvX31zY6wYXRKyGmTVjR/hNXU7dl03MDBUEDSRy1dEK2t8WjyeCOhF4PZ8QTKrYAQDs/ML3K9rIDFCEoEtnJ987wcA4uE/+L1AuLKQTb399JOtqzYt37n1jDM3NzicnMx9/bKpaVgIhhGlBNX48brmYIRYdb4s0fTG7p6utgYJdPmmLS8du1xAocmk1VYdbli6uqZzzeDBl8++dpCYOEj9gGjesYbBdOojTUY44uAFKYNUi2qoYFtZITsRHZlI7x88EjJwc2MLk1wCSTHWEoo0+PTuUGVbftn5SxdmZqfjqUyCttdf90CgsyuRK1iCm7m8k00rMCulRBgkSCylEEhg6R59AVJwNWXchapYqZpS2UWA6spdukcDlBXhI+nNQFHzPbk6aMxFYRzryB/B0Xq9tr1gNNs243YOGcFQrMIKL0mfOzzz8o9mxy4+9Pufr1i55uXe9IG9h4XlSEQium9Ps/nIbdV3vOfmltZ6gnEwEmlcvvqOu+/btOMGADSfTNiFAmbmOweGj70zdJH5AxpCdrFoFdKFTNEqFM18NpfJm4W0XfjOt7798s8e9fkD4WiFj/LvfvlvBvt7x2Temk/5EWqNkLW1/taIz7SdhWxOAqmJ0PoqXxSn2dwIZOeWrVtjzU00di9b0lDjC/gm8+LSjFWzeueKux5efsPdkYDhIwgJQQnSMJl3ijPIzkQpx1KntCLgX1Pr66iLYAIFIZc3GIX09OTshMVFXW1TV2e3LxDOWhwhAtjZtn7tg/c+cPee29rbus/PZk70jiwMjRYvn4kiUt3ZLTTDsbnNmMMF55ILqY7Z447kTHImuXA7G0C6Q4RLNIKqLsOlI9JLUchVXZ4gpXBPKUQIuEQYE6ERrPux7sd6kPjDmj9EfUGiB4iuF/C4hqaTw5fsRMGsfw8Nte1eOqUt1x899sZH//yPvv4nf/HEq+dXbV7d0NFdzSZvfn9bdOnNxOeXxJGUEOyLVddW+FBlrJJzZ2Z2am1t56ollYnZuf9+Q885rC2qT6dyOUuYQCoCGCPkMJMCaAhrwPf94Fvbd2wMNdStWNp5mmTP731GfuZDfC7tFIpN9ZGldf6Uxeb755jE83lWtJymSj2oFayB/e3v+VL98o3nX3wiHo93NNVNFObTEp+ayPT0Dq6/XWvbsK3uuV+nc/GswDZHOsEZzD5+8PsO4zkKUaTVUrm8PqL7tMHEZDyVDKghk7Y5NnJ5anosEKnQERnWyMraukCaVNY0dnT2tLc2r+jqPnjgwA9+8tNNddoWLRFavbtm+23Z5vT8lQHEBABICgQBByy5VHQ6AlAzUFzYgxEC7BVmcokxllhKsTiFRvWWYeK2lCIMLv8DGBGCNB/xBYkvTAMR6g9Tf4jofqr7ieGnmoY1DRMjb8uGquSRQ6+OHD55S3Xduvvfkznxk+oWsmVs/vibL9x0990v/uSHLz5z6OYtQxtvWB1rW4H9FRKELCZFbgZCzaGKCmbnKv1418YPTY321Ufn7rl3KxI5Jmgxk/nV630Z2rakU3/x1QsVwJuievOK+uowQcyq8IuaoC36nvF1/kl1a/fuXRum5sZJJrdWOleQM52226u1ppjWEDGG044t8EJOLKcoEAlpPE6AC+KvX7ZibvjZ9WtXXxzei32V08Xs/lf33XnvXdGQf+mSepFPsSQqFkWAGpqG47Lo84ebSAEJXoHo4Ex22pZn5nJX0szw5yjWbGRJQJzLXCqpXFEuk2qN1Jk8mTUzK1ZXtPd0CLv48r75sxcvrdnY2rlsqaittTAUU+nM9BTC6mQkJLGQGHMuCQbhzvVCgNQZ8CCFpOVED5JClh1SrWJYIjkgSSQhWAPNoIaf+MLUH6GBCA1ENCNAfQGq+4luYKphqhGiqcAWMLW1Zk6nl1235+LFSauQ8nfv1GEu2//mPTvb+L4zB0Zre1avf+346U3Lokt270EIY4oFMhAr2HMXQasGgjs3bDn7s6dv3/nVk87Zvv4vvf38b7beuKuuq0dWaQ/ft2rN7bdD6vWJvgvJadi6LLpqaayqEmsUY+6As6Bnj+JCIljd1HPdDc4Lv1hphXfddut/v330QFL2ThWu74l0VusTKYsJNpWmAEA1CsU5nhgxWjbFmrsr6msIjm9d1rD3/EwsVoGlSI4O0cpoZU1lW3MoZRUtiYH685aZNVmqkFjbFKjSIZ62h+eLxxfMhaJNkFXJSCwQioVjFHiFbY8W8jmEKdFSxaLgLFXMLaTPVoS72zqaWjrabtp1/fETmrHnrvpd9xYRYYTmunss03TSKeS2/7ljLRiTUk3pc42tgroSq+BGIuASuAA17lhwyRjj6gw/oqFAlFY26HVdodbV0Y4Nsc4N0fa10dbl0YbOSF1bqKohUFETCFf5QzGfP2z4AppmEKITjIUezkNVe3vNJ77wYH17M8c+3LjLhJjk1kO3L1lZEXcyiTwOnBnKW7msBAbAsWTIV0GcNE5ckMVcfccSHzYHBp+N1jTMi67zQ9nZqbiVmeOO3dro97FLr71y6OgAcoQQwmF21jazwPNIZhGS2JwUU4d9oVistb2uvoaN9jdvvW3L8oYoZvGsjGft2ogRoGA75mTSzuQZBk6BO7PnMdWNQLhl3VY2P7RmaWc1KRTSiUgsYmjUSc9pFDd1tnU2RfcsDe3u8jX4QRNmslgsIrmkOVARhMtZs8CZppLLBCqra7rqm26LRN8DZDXViR6QUiDJMtbMbO6diyOvvbLv5Uunz3PLbm1taWzuSAQriD/s8/nDkUhtc2tNWwc2fJwLLgUX3GbMLh0drfo6GZfcRacq3+nSOYK7Q6MQpUgPaL4QDUb1UIUvGNWDEeoPaL4QNXxUM4imE6qr82rd8Y6LLcNqDpEECQJwTquLFEcq65o5EMdJQ6A6tmSbtCYFtj5035KhiXND48XXj/RtXkZX7doGGINwAOnEqMD5YeYwo6Jz7arur3//25b2fLIwGgFfIm3anIcCKDmT/tYPDr14et5BoVh1VEjOkc4BW4UMRbahYc5tPvKysfROX2VD3cqNqaHT8rp7Vu66rvr4r+JO5ViCbWvVa4JkPMsTRWc+UeDVSUZ1c+iNyPoPaEYgVN8eq6mcHx9d19U0cWY0FNB05AgrqesCULShPh8IBmemZn2SrQji7qrA+tZwomi+Nl0YyRSoAiKAi2YxXchz2xpLL8zhaF/N5oK/Ljx/FNKDGhES5/PMOXX5fDqZ3LN129IlbcFgwAHBpUCU6IY/Gq2sbe0oZjLJkWHuOBK5h8djKTEqnWO9yLVSl4NFAFjDhoZ1PwlE9FBUD8b0QFTzhzR/UPf7NcNHNINSHVONYAKEIES8AW7YKwor8VEu+YtAWHpNIR8l1hz4aomTBlLHIVBMZiNNLUHDft/9cLx3Zigl3jlyuacLoVCIaj4pqbAjQHRdDPCpfasa7I2txjPnznDA4wJfjNfK3rtY5tX66qQv2l1bbXz6i59du3ndS//516fPXly6pK42iisqqyXFiMREdlrEL2nVK4NdqwvnjhSTs017Hl7zxEuX+4pz2SAV+bqAmC0Qm4ukKf2+oNQDxcxCYfxUaNnN1PCH6xuOH3jjykJVbU1de01IFhI6FShS4QNDR4A1HWG5iUE+k6+LaVOZwhO980NpO2AYjDE1U9a0rImpUUKNMQw8UJtyNCMMrS3VeXNqR66yL8qHjGKxkB+amYSjhykIopHaWBUgBAhTzfD5Q5WVtcW2TjOfy89MIc5LnbRclRiUCB8AkIIKXceaT/OF9FBMD8X0YIwGwpovoPmC1PBpukGorqZXY0QJxtIld7G3K9S4TdWFhqQKZVQqBgABCKyljdZAfpz4pDRzkF8QufHRU6dW1DbLQP3SVZFNqy+9dKDv/KRMF0M1NbWSCCw54hlZLGAzC5xX+4OfvK9uNmseH8tH/Vpt9Y4w3do/U3Xs1G8m0ZmccCKVlW0rVuz61B+9+b1/OXvuwvLuEKJaZXU18CwvzMHgq5HWHb7azlDdpDU/Hlmyadvtd7w68Hja8hs+smN51cxZK10Utc31weZaIQTTAvMX9pHqbnBskHZChBKWAKoHfZQSjpwUBYGwTTAwK2P4KcOivj60bzDz+pVkxnT8ulYZimJMMoWcADCLBSSBS1nLjNut0Ev53orK4hf21PTWN4y+lpMIuuqaJuZn0unE+Hz8xLnzDc21KwwqVHcKAqJpuj9QUVNfbM3ZxUJxYYECVy1mEiPJZTn9gwBopH2dEYzowYgWCGu+gO7zU91HNUOdH62OH1bnLHgy8pq+S5lP97hlbwqR9Mqu3a5EUfA15wo1oXzcSqV94XBFY3vL5t1crwV/ne43t+9c99bxoYmENT7LK1b0kIAPWBo5OSgmCUjkWJKZzQ3kzz+05Pxzs2MT+QuXX+zvnd68/JGqqt/lFw5O5Z790l985R+kc8Oddxj+v3vzv786MHgcOLNzRcyyhubEfKeDO7JaRZ3e1OkwEwB37Ly15zevnJoXkZr69cvqYo1WImuv6/InM0wIR4oMXphPzX+ZhOq4mUd6KIgLg7Ozw2F7V9yPwOaCgUCIGJI5rJDL5J3X+5JvjKakBB0hzsVCNmPoBpdCCEaw1DSjuq5514Jxi1VxUUwNLcwWMtadu5u+Ec+PXnZurFtdHYucvHDSstl4fBYHiEaw4JwJIaREGGu64Q9FK+qaCrmsU7SsfJZgcGfvgZTS848ISQBa27OeGn7N8FFNJ1Sjmo4xxkRDCABhN6npHail6PWSXS1xtF6yRl1dIrfr152cIYmeDKxE2QtmLqcbBRSqq2pbwjkXwhF6dPXGNS3NB68Mjp+6OL3seqppEYIpED9oIWTEiLkAglkyhkT0ev3VJ6bipzOZsHaRFQ9sWvbZnWtv6EmuPTf5+j9++XsS4Ia77sg+9OnX/+Py4JiZnM9VhFEsqqHZkcrZy762bXq0zo6PCisfbl9RVd8UzU/X11aatqzzZWIinZySmhHwBfyEACEiP32Jy37GdbuQEEIHQJl0Mj91GQOzTK5pAdBjCzOTCzn22mDxwqwdoLoqziHUBwgzCYYeyOeTUkiL2+G0ud1qsU2+iVQPz+Uf3Z/9uMFDFQ0OH0xmE+uXrUzNTYxOzyaL+VA2W0xnTMuSlEoJQgAmVNd9oUhFdWOrWcgnRofBshS/gzACwKU8NEJAo7XN7pGnRFMH1ILXfyKvkVvZBKNrCN4ywbqO2DtxDQAAhCj6GrNWNlxTZJABKy2LSTBnsZ0Qwa6Gusiq1V2XhiaO9C3cnuFGfQ2SeWynCPEBt4BQJNl0ZMf3U5uztc29TS8mU+ctK9sm+jn+j2hVnGh7QuE7Rw73/uEX/uyLA4MNAQcIOEJKGsSRMKmu4iF/fm7E37WLBCrMude4ZNJfE4lFdvekZXZiLqMzIbAkhqEbgaAvHApGKogR4HZOcG4VrJrwzMVZEvAF26uwY5lIo1UNrZYFQ31D8znx3Cj0xU2KIKAZVeGI5vc7QCRANBrxG8Ghkb74/BwAFpaVs1NR8O3m0RM0cGTMhNdRNFYdC8yMT09sXrmmu62DF/JjmdzMzMyRw++0dPeEYxXCtYQSU6L7/OFYTVVj0S4UM9PjUnAi3SnxyMuFACDqC4QxQlB2/JvHvF81pe/atMlv+0vJJ0vVQ+ieBIsAAGGUD7VqiWM6SgiCQTDBOeQTglOK4fbrWve+HZ2cyyyM9Ve1L0WBSqLFBMtjHEA0DHYyLKbq6Jy959YNK66LnXzn/Ds/MmFAp6Y/ejhR7H3zhDaZOJyxMl//1/+6dXl0SVM0ZISDlVG9Isr9oZyVnZ+4EnNsgXFy8Ezu7V9go2JDbcrfFgRqaKFKQDSdyApWCITCeiAQjFYBoShSgTC2i8XN23Tpm84kM+uaabCuLhjSfQhmRgezFrwyATaJVIVFJpdi3EEY1i1dGqyuRVT3B0MOlz6dmIWjeQZjyP52cKxKYoOjS6RApTY+Gc9kTACcsQtZp9jY2Dw7MTpXyCXyhZnxyWIubwTD7jnXAoTEWNN1fyBSWWs2FqyiaSbjGAQC7B4y5C6zpJiSkhg8grZ0jPq1B2lfI8tr5O1VW7uwFhYPywIAyfRQOrRKm3k+YDCJNexrAOqXQlr5+KqOwN/87i2Xz/cFedyZ7tVa1qBgFUKGQBrCPtAqY7z4ydbTF/u0vti69ttvnxnpXUgOOgylEoXWjtA2e2JovmBzTWiagzWkh2iQcqIXbcFYmrIMGjppFZJ2dgHZaV2jEgqxqgowooQaQnIrXxhP0KHL83fdEgtXBThzCEGaHkbAtcqanvrumoaRFx57aXjCvq4rGI2Gz53qP9ifPjZVGEk7rXX+5pq6EbtoM5bMZhaSidaeHiNShSh1hOi0e2YmBkenp03LGdf0aaoRjTJHEIACt9bW83RRO1LQzvLMHZVtkXBITktHCIGw4JIxzt1uaJUOQ1jTjUAoWtNgm/kFx+T5THkBtCKO6KIYPMm8WymvLv26SqjvfsFVL5Nu9acUAktggdr5ypsq4q8G6TzXI4AQ0vxasAYR4+Ybu3dtXVmYG5KFGWc+IK0MMkLAHYT9SPdz7hgEtp7/4eiT3xjYcQ8unJ1Oi9Gk0bSuTRqRtStjoxPZF4+NOpwVmBSAOBC7WCCchevqQ6E2vz/AsgtccASc+MNcIkB+IaRdzGq+ICDUe+7iyRGruXnu+qooEEMPGAhTAALERw2/xdC5actkfJdjnTg5+aPDCzNpNJ9xiBSpTLoqEquOVU4vxDkXY+OjHV1dtdEYpQZGWk19U2dHTyIxz03GuQTgwUDQIVq+kHNQccdqO+jzn3hh4fDM5OrKmvpYjBKEMOVYYxJMx3ajd3fqJRKAqeELhCOx2iZmmqmpYW4WsFQHn0vOhXu67jWqdo3YSqPZ/jcdfbdcS8rq1mZLQO5gK+5E2xbQbdbUvog1QwK2NBFQP5BaANCj9TRUK7klkcbycZGbk1ZCEg3RANYDYASLlU1LV+baduu9l9PTlrg8ld8mZDBWy6z8xhVNZ64sjMynJZeIM8E0pEO0ui5W36yB7fMHMdW0cA2JNUtHczIJVpzDEkCqmWgoy1CC8/OjCxuX+pGTk9k5EqxEgBhzEKZDvZNECzrCfOXkxJMnxqazPOzzaRhzAXnTnE8n62JViUxSCLGQSo0NDVY1Nuv+AKYkEAl1LF05PNKfnZymhBBqMNuUCBu6j/EcwnZLXSDsFLMz8eHWxHKNGgRjRBxCuQDbUUQQqMPI3BnjmFDdF4hUxupsXiwkJ0esQp5LaTHmOMy2GH23bH6rzMqN8P/9Ynn14PFrLoQkF9GWtP5gcXhvLNXvC/qBczCzQP1ADRRqxcQA3Uf9nZLZ5lzejp/HUuBYm4w0OTdsa735dgcFuttPXx4ezxWtQsEMVdUV4iN1FVpXrX88kQsSi+cWuNRjXe21bT2I51kh5WiUBqqEbfsaltkmzhf781MD1BeguqYbhmPbAESAGJy3Lcsx0mmhGXw+AY5jA8k5ZPDybJ7R8ax45+0xyRmSPGcWQE0fBDGXTkQCwUgovJBKMYyujAx29PSEKqo0TQPAlfX1zU0tU7NxTBCo+eusiBBlDIYn7SDYoogawepmyLLyYR1hzMaGh8dGJlq6OyRxpzwJl2lXBx1R6gsEY1WF6qa5hcTs9JxZLDqM2w6zS2dfv1v/3i2w/83klp5dzKNd/RrpnaetBhiB4NIIpev2TJwvNCaHqis0wAxRS0pMGefUh4guAZNApVHdRTBxMpMciJOdY4xzScFXt6qn/rVD2pV568pkZlU+rrGkhoUfWcAc26YE6TUNDdUN9VhYhfikU0g6jAvhSISNpnUynSLJTCJRWMhnlrRHKWIGIat7GvqSUBWhBmdmXs5mzZHpTH/cHEiYcznhMJm0GCAcpBpoOpNSqiOsMSYYO0KMzi/4iEowkmw2Ozo82NDZ7SMhRGgwEu7oWjp45UomX4wGAlnbsUwHpENw+PDpyshQbYUoWkLy+EIhE++pCs6bYmJ4aO+Tj9597/1VS5Zzr2cE1AxEdVQV0akR9EdrfJWNxbGpqcSM4zhMABfcawh8F5T938T8f4v8t73EjXZK5+kghCRjqUxmb59dXLDfv6OxOWwVp4ZfeLVvWXd0y66NeiAkOWP5WUSD3CwIMOwiE3bWLmZBWJEWY/OKaE1lZH587tz5gZs2NgY00yCytSboJwsDcWd5c6yypsHJZybGh4vZVCCg67VhQAQRLKnhSAmhGguFTwyMdzVVgJCaoW3uEJqoChB4szf91lB2KOHkbWFziQA0jVJCDJ9PcC6BGwRrCNtcMs4QCIywTghHOMc4EE1gzKUcGx9fnVwIVVSqQ6iaOjt7urvPXuiN+P0CgDsUS2iIbq/ROouJyyus0AWSmp4aqgswYWg2wtFAIDp6hh/VeE29FYmp8ZglcRJCCUKg6b5wNFLTGGlom4zP54tzBBDBmKoxYgDwruNQrpLo/yG5a2IbKDO5SiORdzqp0lOMMSsWR0dHRuemly1Zx7t3FnVnaOhXvzr8TsvF2bqqcMuypcCymCCihaQkUgoigQZCWqgK6T5AuCroLG+tvDi2kEwnZnoPEOojvnBTbbA6EhxP5CcWCm3jE3YhaRczoVAgEA4LEgJMkZRcyEIuy4kRq2vf2JomFhN5FE/yyXkzkedP9M2PJk0hgWpGSNctyZEAQoBxLrCm+8NmMQec18Uihs8nEWKWlcokbYlBckP324zajokQmU+lpsbGqppbqc+vaTRaU9PT0zM4eIWArI1GTMsOYLS6lUzOX5YLk58X3a+TsUE2y7g2k7Ed4rth5561ei5ETMe2HDWECAAQxkSdN8Q4IRQT6veHK6sbWrsL+dzMsATL1Kk6v1MuVsmXhPdbg87FupOyZ8sONHqXykq3jMhx7GKxaFuW7jN8RJuPzyWs4patmzctW15dGXYYC6295673ETJz9uK5IS5JXWOFRhiGJNAgon4QDAC4yIKJEQiq6/fctHQqXbxzU1VXmxOPm1q0oqazpepk+spCzhY4FZ9izAwGfQiRQiqN56Y4swRgwRlnDGFKJFT6xOWJ7Nk5O57HoXAVIv4CS+kYKEEBg7TVN5oIdN2Ymo3PJBYkd4QQfn+kWMwkC/m1rR1Llyx3rFzvuVNTyVzGsiynoFEfwQHLNi3bGhgZ7Vi+mvqCVNMMv6+xo31ZR8fU7FxzZWxhIV4f9C3vCIQiRbEg/VlagYmu4ZzNLcvWSbC2uyfW1cZt0/SHBC9NxgMkJMISE8ASJMVUo+FItLGlRceiIkBz0+NYMAout+rlt9y5ULJchCVRvRv9lgQvpcSKklfo2iNtEWAhWbFQnJudTaQTldFYQDfyjtnZ1lIfrQgHA7lEYnDg8lQm9eCH3tvIts9e3JtOZbJ5hoQJTk7X84RqwrYAsAQAjKjh0/zRtV3Rb/3FzVKAw6UMzBbzOWSn17b4wapc3xHShUm1ANV9jsO5zfzSxyVitsmKBQJoYmrqqcMXp+JmwhRz2ULEb2yvD9bV1PsMcv7KFdOyQbDm+pr2VWspNXrPnjp86nSBI8vKOZgG/GHLKpw6fyq5MNXd1mlounBMyZnk3HYyRDP8RoAJ/fLIWOjw0XXr1zS1dfojAX802tXRMTuXaKiqDOrdhrAqKgKxuuoD+eKX+i7NW/OrpeFHIkRkbawC+X2mP+z4AlIIJCRXh564hy0KDBhLIRGSmGiGL1YR0wkEdZwI+sxUnEIZxkGqpV4NUL3a3v5vpvVaJmExRJEgJAIQUlimmZmJj/X1FYXjR8RXY1RVVfo0nXAxNTZ29uzZ8xcuoZB/45o1LZXR7iXNBDFOAo6gBVNODo1O9V2urIk6rAiOGQj4ZCrnC1iaP0eoBoRajrTTScd0smZyeYXVvSGCMC7mqeDcsZAUlIEvn0Qrc1nM7X173zp88MiliZmpmfmgz6gJhoIGJ5j4AqHKxsaKqop8NjswNSk5N81cdVUsUFGtEW4WClemF+YScSksx3T8/qhl40vDI8NjowghR4DEVMMEEYokR7yoaQG/cBK9x18YGdy5adv2pWt4jGqaJjn3BX2rN+5JzwwHQkYqkx2fHe/NTVPgzTns84uqqmj39psrG5uYFG7tqwTh1tlKKQEhxAUHwCAwgMAYU58RQDENg6Gh9LRG32VUr4VC13jK8ojlGk0tl7RLyktpW2ZiIXFlcHBmeqa2rjYajVVUVWsU29ncwOCVC/39yXS2uaE1Fgk5NjcZwibTUZZojs/nD9XWFLLV+48H73nfF0ONHYW5ifmzr2rByOz0bOryxaZlS8EqFjK5Qk4rZIvFTDZn4WzB0g2f1KqidY0Hzl4eXchML2R33rX8TsFPHT/xnZ89kU2mBUiCEBNC17SqSLRQNB0hwlVVoaDfwFweQVPxeCGX9weMWENtKBp0TDNz4IRdzK3vWTIxMzE4NRXyVwqtumgWJMYa0Th3bGZpCEcCYYOSyXTixqbof61r/PN3xl578ZUtx5L6/WsXEguZbBIBC0WChFVZuWx6ok8z53XgPt2vU6pporKxuaZrKQR8XAg3q4m83KOaV+PWC0nEuQRgKhTVDT0YCYt6EA69WmASkFfY9y5L+3/ra6lBsIy7lyClbVlj4+MX+/tChl7d3FBZW21QLZ1Y6B/oH5uaDPsjXTXNgIAbVOq6A4gLLJwssnPADS5FQ41WFxFj/b3re9aFKhtFIR2oqg20moV0rnnnIyhSk0vN24WcKGSHTh/KDFzBQWlU1DIaGJnPDM+Zs0nTofqNe24khJy5cGlhIWkYuuEzmGUxh02lUz5N54LPJxd8fl9lU1PUgGIm4+QKrFAQZi4ciUA00rm0o/dc78IcWbZm9c5bb7p44u2FkcGB2Vw6FMW+MOfccayClbPM/Fw2jUFGfMYCBH49mswifR6ZL/gmt2RrUHp2VWOsrbnOTkwkhs7buRRkE52V/pQIWQ4PBfyhMI02deNASCBEEBZIDR6Wi5wpAilcHleVyAokGEJAMDF8OkRDkl91ypFKObtV9G7O5SqAUxJVyV9eXWB9laTVHxljpmn6NaNr6ZK2jg5d0xMLicHx0WQ2Wx+KBamRZ7b06Q2xmM54kdEAijCrCFgghDhKYRL0k+Clvc90dHeHl2zmgOdHL1e2rfcFgkTDdW1LnMbWYj6bz2UiDW3L80nOgDEBINLxuOakzpy6MJPNP/a975jzs/Gxcb/hb2xq2n3bLe/sPzQ+NGAxXrAyCOT0QjKTSDd2dUW7lqzjdnxkdGZuPjs7ZehU8/v1zo51K5ZMjo1jYTWvWLHk/9f1X8F2XleaILjWdr87/nqLC28IeopepAwlpTKlNJ2ZXSYrJ6u7ciImOqKiZjpqzHPPy0R0zNN0dHRUTPfMRHWZrLRSZspLpCR6AgRAeI/r7bnH/nabNQ//uReUKhsRJMCLS+Ccs/699jKfee6Z/urdD/7+r97/+LO9YZI6sI4iv4JEST6caTz93OQrt9t/+//Y6cbWSiFv9ffmV+9OhDBbbcFwZ+X2g53VB5VAVmt+oxJ6A1boQb3aqs9UvbmToAIEKA1tCTiiwxKrM+rZSzYnOSqzMAFnmgiYECr0KvSr4SSA0QLk19NsqYLxD85ygYCVAprwuTuXyrUKAYEQcvHMqXPnz9Ur9UE83I8HHuPzUaM/HDzY2oiHyUS9vp/q+3eHm9O1l8bUhKg61zN5zEkTJrV6tbub5Xc/lr7HdBqv3a6OHTOFaS/fjmZPKj+q1lq1eittTSbDbp7GpQqhX2v89j//r156/VZ3b5+4CGwe7Tx6Zqa2Ndh//8ffJ23r1UquyZEzVu/147/70Q+TIn7ta1+bOX322Rcffv+7P9xZW0FnvSAQjebpJ05c+fRy2tlVEirjY42pqckjx06f/96FDz5a3o07w7STxMQZ+pFQcq/or+7vjQUi8FQ3idtDs9/tLB2fa+9sXP/o5/1E56TCWrVAcWNnsLybtjwhJYUzS2xszjGOQMjQOVdaXTtnSsrRCLqOZUjJgQNgQMgcGAbABfOCx+E8oJIdjBX+s9T6nzcwv3qwEX4tbwM4cjrLHNDswlytWrXoDLiK9FRYGQL0drd2ltf77e4jcDFYJ/nTT51dqMzXwvEAGek+Gc24PTbLHt5ln37/z57PHtbmz6w+urm9dc+1B71H48OT2yKqSc/3/CAIIz+IsjROk36RZUYXKqxUZ44YrV2Rmd6e3b3/6usv9ViICC7Lr9xc+ckHHxaWgAngeH9tc/0//rlO49/7J//kld/9g5v3VjdWVvPeXnN2Hnh9Zmnx6ML8oLPPilRyJpX05pe+8Af/9ZNf/s3+7tbDD9793g9+cb+fFabY6Vzb6t5gaKfrVSY962yuC23M5sb29vYGkmk2a7MzE8pnK9v99U6apMl0EHk+ipnjENaAlaRbQsYYMOcc5xxGwEsAInAHgGfnENE5C8AcECFKLsU/kDnx14/mYSB/7TtHYX6cWQ+jT4DgrIv7w42dXYPUCHxijJApLo0ntZFmJx2u762srW/3u/XpifPnzj154thEtZLprJMFfrWGQC7vki1aoRV8770r+3NTF+uRKeLuzp1HYW384YfveL6qLp7xGq3KzKnCj6RSUnqs2hAi0XlmjHbOWmOMViSwOtb0JyZPP/sVhm6wtRL380+Vr10+Nj6RWlje2My1+8EPfnxkZuKLX/riC6+8+rf/8d93N1dnzj4jlB9UovGqv/Fwr+js0NwCSsk5F74vp+eDZpO1V2fezv2pRp95q3vtvHDV8alT8+NJf3e7J5phpYj7W1lfef7sZHV+fgLAdDq9YZyRtYhQD8PW0hk2sUBc8MOWEMABMQalmyqQswTgSk1NgLIhHKE+AB0BQ4v46xuVg8vyH9iufD7B/kp0P1fi4khXl4AgT5LVtbUb9+9N1KsSkUuFABkRaT3Y3Ll29cbFW9esL770ylsvPv3k3HhLZ8nmztby/p6pUSOQoao5m0I+4ByfOsp//pHc2u6fTjafeab5fm7e+WSjiivjbDt87hVdj7Lh83LqvInGddQUUjHGhZCMMWst45Jx7sBNnH5SRHUvCgGhNjE5VvdanmhUgq9++fXtAv/dn/2nuodYuD//t/9h/daVxSNPaJI7K6undC5lVVbqkedMPCh6e5TGTgoBChHAGkWOinQ88l966hwfm3q01nn70+vjzTGZrTepf7KCjdCN+SwIq82xeqXCgEM8iLMk1dpqIk/5zel5f/EJ50UH/nCjtTF7PKIBhljaOx5wjQgJyTk3cpFH65xD/JWNykGoAP6BYvYfCGp5ax72NofpGhGLvNjf79y4efvBnTvNE6dAKd/zhoPB2urK7p1H1+7fvb+zfea5p199/tmjM7NIZmtzfW17yzlX9wJt5c6wP9ewXDWJ0OlibLw63vDTONZZVm2KmbFwKtJ39rz5zb0lvVUNz4r+bZZvaG/SzbzomvOjfgqgNCNmIK0Xjp97CZAz6RFZHkTN8VrIXJ7G8fZypw8hgy8cm0PS8SD+6btX8eJDbtzqw+W0uyeUz6Sq1CvNSEUC8s07EI9pzpPdZbB5VGlu3b2rizzfu5z3on6b5Xm6urnSqGZV3z/WhEZNSOkLLwx84aw2WWLyrNQilsKbaE5MHH3SRGNgHUPDOUPOS4PqEtU+MjQqP2M2spACGHmKESFaIlZKHv+qf+f/1qX4D87ly8kgHpz70XMAhIjkbJrEqyvr1z67lg/6+ExQqdbAuq3Nre9/7wcbqxuLT5z8p1/6w9NHFpWg9tbmrbt39vv96fr4VLPJGFkOA6+VuNUINcgqMOPX+XhD6WyQJwO/vzPs7p9fwPpYZbCvwRbcl9KPwKaYLOftRpb1SUbAJEqPybDURUehGOMIAIw5Y62jSq3iKdzvZ3tbGw/XumRNWKt+9auvb9699uhHFx922xz5zVt3X776iXpeUp6G1fD08Yl865beeD+IAqvNYPORs2xidj7e3uRYTDeD2KTrg34+NN3CyfHmWMOTUkgpHApHOs+dYOhswRnzlK8UDyueNz5rVHWrO1CF9X3fj0LP9xjHgwUUHAhCI0Ow9BhG6ciRLVnZUA7+LB1wVH4tkdLjP+YfaFdgxM9/HN/D67b8RqP1/t7+9es3NlfXTp0/ferJJ6ph2O/3rl64eOfe3Ze//Oa3v/LWRLOR9ju3rl29/NnVItFzY5M+F51+P+l3JhcXvNZSWjAetxVnKEIWqbHxGm23AcCZJBT9nqZnjoaf9jv5YICOkHsoFJrMS5Zt75ZRE2AS65yuLVE0Q0ELkY8oyWSs0XkSg81qoewNqSaKiNmK5919sPzkM2dOvvb1l3eK/idXMmtx0Lvzw78ert5/tLr14Nq1uVDX+PbckelIoNZ7QVPG3Rzi+0fn1Hi9WanLdD/PHC+cQwa+J4JAMsEQGFlrtUFyxC2QUUIBlwUwGXrIxMONze3+MIzC5vjYzOx0vdlQvoclM3p0okYDHjyEwZYdCAE4R4yVg108TLafDxiNsi3CASn0Vw7lgWHWoeFn+ZtwqClOlMbxo0crt27eDCvBG19988zSMaOLh/fu3r1370vf/Ppvf/Xr9Wp1f3vto/ffv3DxUmBVo17LBba7nfWHD4eueGVuDrgcUEQxq/KYhxXkqtqobGygQ0miUq8PNpY7jAbayZ3VztjCQyw6QsrSulA4J80+ygC4pPSWTh6krpZnKUVzhWNFb9MVMQ+nWN574czYjLc7Fy6nLQ8oBHT71348jY+en863Z5v9OD8dDIdr9967de/Ovmacz8wzj0mkRPl+beykS3PBbxFTSoSqCmlOqdZ9jRYxsy41BjgQOaN1nmsgLF2hlOcJ6RstO5ZQBp1er7u9zRH8MFw6fS6qhJVqFejXUuUosgwZgQU4kIo+WCETUYn9Eodx+rXs+jm69sHXAeDAvuEQRfufR9oUer/dvXvvQXdn+8U3X33yzFnJ2Mrm2tULn84eXfj6V7/WqNfWlh+89847lz682OnEE1OTE8ePTNYa6aBbnRk/Oze/ODVphr3OxtbOZmepvhc0Ck9VAMAJZUAZ8AvnGyJPUsHU3QfdqemrY3PjUnEuJaoKCoFmCLbCvAYxqUDD8B60lzPNqdCUdBkijyYiJs4exaWoRvleNcTFVoFgmi2usjsLY80/+ZKXpWy419/eSrNUfOnFL8yMh/nOTSYRmbOmINKERoR1TZ4xzrlC68I6Mm60enCOmDXWWWNGHkOMCz8IlO8jF51hvp9hpovdTidNY4bOmHGji9LG6vADRwQ7Eu1CRLD2sUjM48ARlNIjo9P5D7aSZbPxeAx0+ESMxC/Afa50evw0EGVZtrm9s7m6qhBnpielde3drYvvvbu5s/lbb/7BdKvV2dv74J13fvyDn/ngj83PHj9xfGlikvlsbGLh6fFWJYwGvc7tG1euXf6svbv620+IU0tpR3fWVrtAmBkVsaBgIVNM1av+uPzkSnJ8vVutM1DgvAhyjZy4CJlKKW6DCPUwzfbu6yLXFLgiYQCOBc4OrdXobKUhinQsM3Z2KkTMuF8EtWq9NTblC5O09wMpqGAqkhUR+txr1KTMyGpb5HkSkzUWuC2GVluT5Saz4Fzdd6FSlSicqAXG2jLVMQZcyrBWCwKfSZ6n9v5e0kmonaZpOgTnVBCNj09N1puBlOSc0QUyxjknRIBRQXQ4UcdRTz9y4AU40EH4NSvzXzmLOKIqHPSaj2Gbo29grDzpn5/WOufiJGl39inTofI6u+3Vu3d3tjcvvvfh3Imjc61m3OvcuHz50keXRKP++htvHpkYJ3KiXmk16y1PuXz44PbNTz+9fO3ajc29dpzrIo3+KehKgDOVouC8PzANjCyrqWoIXiUMbUpYALPIHWnKM4AcIDcsRB4gOGvSpD/UvW7hpCFUQQCkHQIZRyiUAEKMxia8sG/SXJs8ak2qsApgC8sIVFhvTh8JvCDv9j9yeTWqB6GSzGVUgGVgtWaWbDrMc11ocoYJwZcm/E7uJqpeMyQqxS8ZY1z6UTUIA8YQnF1rJw/appe5fpoCgZAyjKJqpcIYi9PMdrqyz4VSQRh4voecQWnC+9hbAQ4vQToYLyDjVJolf37P9Wsn9XNfL62Y8SDSDhHQETrrsJwuAgDpPE+T2Glbr1SyYf/BzTs8STfX1x+urC0dO1Ls7l1dfvS9v//xkPF//s/++NTiwnZ7G6NwdnIqYNjbWrnwwYdv//LDh5s7jSAMvTDOeh89ikmIP3xx6vRZruNuQa63uzfoDmr1BqpartuBYF61RsEksRTMEKkgU5isD4TOMGcLR6KwaFlgisyYIZPIJViTB7Ua0jBN+1wIRONMx1MVhmSLARUWeGgsupyAV4JKJgQ3uu/JxJchENmssEWKKIy1WmsCRC4YCgEsqsJiIw984oIhU9wLuFLKCzhnyAiB2r3s4nJvd2D7hXHOMSG4UMhlqovN3v5ekQtkkvFavTo9NdMcb3lBUIKi8cC6ajQVGEVuFJfSpExYa0tnlrKqOYTzAHz+coTPfbHUfkNODnVqi8IBOhVwLqjIYGeLbyyLbscWthenwzh2w6zdacfDdGdza2N5/er9tct3Hz55/uxMpdZNY2+8tTR7RAnW21q7/Mknf/PDd3b72dOnzp8en7h+9+Z+PDyzMH/u2WdwcSbHfcXvBDTQ+aDI41rLSxK9tpf5Pgb1JosmmbCUd8HlaFIuY7IGdG41OO24zxAMCqETgxaQZaaXGCrSImNSJt3dojfY3SMUdmo69isKrcbGmeHYb7z/nX97ZrxXqWSVaiT1EGEITnMRGmsIOFeeLhLgChgH4mA4oeWcAp9LKZhQTPkyjIQXcrBkMg6QxPmnj/oPO3ZYWG0tMmRcMiZ0YXY77Z2478ihttLB1Nw85zKqRMrzSo5CObf9HOkSD6pWJAQkQnAiTlMphBClyw4gALKR1Ax8vrz6XIULhMgYd4bpHEyqSTgmEBD7vcry9fjaxeHKYL1rMkSW6ZjiLM+cc/eW19f3+y8ePbf81Obqgzvf/f73nn/rtVdPvhRFlW57587Vaz/6xUckK9989QsVyR+sr6z2utVa/ezpU2eWFnVevPew09nun5vInljwl442CSAeDM4vevLUfG1iDGQInkQZOZNym6BNiRgjQmtZkckitc6SQy06WZw4OxCBSLKBRQxU4IwxBLv71OkV6IqJac0FDLa2375x6ZdXB+xY98yphierUhFSACp0pYWNqBITxC0BGgPGMVtS2REZJ64kSIVSMSEZgCsSRlonxZ1H3YuPkk7Oc8dGukyERKR14XqZds7ZAgrNGIRRaIoCyrVH6ZtRKq0d7LHLnw4zLiESkej0BoGnPK/U/mdccITSWBCISgmwssRCh4cVFgICMAaMAXKGHBknQGEs7e2sfXbp+kDOLz13emr+wfqjtN8xlriQWzvt737wi2994Y0GF9e7vdWttd8NKnl/sLqycu+z6+999EFUm3zh9OIwHrx75dJ2e/fs0rGTZ05PT05ce7B+5epna5tb/ST7WQC/82T9N56tBdUAuXhuUnpRzQmPcSIgJkLOFBVgCZEJRIXARAjOGUFAxqG/I/KUyJYv1jpA4SEAr6Rzpt2Ki8qYIk+QkKanr33y7lZSdLBOqpW5yDChPMWUj5wBEw6l0ZlhoUNBAJactmAZWLSadCBEibljYEjnaIs8SS+vDD5ezbcTMiWLB/HQ14iMdWTJarKaiKLq+Nj4ZCWKuBTluAY+V/H+Ssr8/J2IKNqdbuB7gef5vvKU9FR5VDkypo1Js1RrzRGV9KSUnPPS8wwAHZPgVYBJBORcAnKq1HbHjn7EZm521l6YLnjIAaw2mhBqUb0wevn6nf+w2Qatwdka4MaNW2+/+/7V6ze1pfOnzhxpNK/fufvx1SvDXn9yYuLM088++eSZvNu7fvnyw5X1NM/Bub2u+18/bm8N9e+8PDszWUWX6WwAIgHrgeCAEhCcyZ3NkQiFR1wQcOC+IyLmBJszfo5A1hTcERAjJhljqoaz1RmTJ86Uwju2wvUXjnuFzOcXJ0S1YtARkwACUDFkgIqYVyB3wjcOLZBxppSi1GZARIIRZ8SRXJEwa4rc3N0yd3shelUZJDrN+CiW5MiARXCWnCFnOedRrTV/5OSRxeONZlMoBQClugzBiJBZrsgOY3mYNBFBJHFWFEWiMj/1fF/5nvQ9TymPMRzqeLXX6Q/ihvCm6s1apeoxXmqmOkAHwKQHXB4OeV0YZbNHWidfOHM3fnDrpg5ZkcRG25zspBd+yVesiH+0vd5BLoS4ff/Rxm57d68btZrf/s3fPDI2/t7HH//y4ieD/uDYsWMvPf/8wszU2sPlC5cu3r510+hCIhgkzjGqNfvVE1vyhMxTnqxI2+Wsp4KA+xHnggmJyMkBkAGmS5/LMh9Za8BaR66k8wCiA146DiNw4gH4Hlhb+tPkQj93zj97SgZRRAIZByGAcW45s4TGgCNjLXcOHaG22hAah9boIjdKIueMnLVZYh0VVN0Yij2rT81U2xntrqwlaUqEQA6RnLPkHDgLCFKF9bHJ+cWjS0ePz8zPRbVquWb+XLuIUNLbR9XpQaFThoBQWGuttVrbPCuSVHi+CgM/CLWnMMv2d/Yf3NvrHq8sNoKKIzgEcNJoM45wOIRHIGQ8qjw1NT/Gpn68/+BeHhsiQ+ArT+fx884t9ns3ATuKAbnBMBkMkqDV/O3f+90nl5beee+9X3z0YZJm55975q3XXqspdfnq1ctXP9vd3eHOSY6EUGk2n3vy3GvPPjM/Nd4fDj68fWd1vZiuRGfGo0k7CPKhkCikYtIHYACaGUQBhAwQnHPOaGsMWWutNtoAl4BIgA6RnCEaxdoSGe0KjSS80JckQHpKSo4IzjmjtbVgHJB1zpFz5AiNsdYaUxitNWMQKAZWO2MSKzNv1obzlrk664ZK5rHxlXDOMACPceEotTojJ4Ss1Fvjk3Mzc0fm5+fGp6Yq9QoX3CEcxKwsaN3j5DpKtjgqZwAJncBS+d84Y5zVRmutC0OgfXCVfPu422KoG4r7ypNcMsZKMDYccK4P9BEASs1UsD1R7LTAgBSO52DPnT07U2ncuXfrk/2dnoNEAidAIrIGlHrtrS+9+PQzn1377L33P9DOfeO3v/XVV18pBoPv/eSnly5dzJOUIzqGmmhhZuq//PY3Th1byNP04fLDoSFoTR2dOdoKQxS0P1gXw7sN26+AcZRbB85axgvkKTCJQgIwcFYbTdY6Y7TOAS1yckySQ2udteRKCW4Aa50z1qEDzgT3iGyRG2sNOGe10dYRMGddSdkjQmMcEFijszixRcqR9WJ4uK93dLU+5sYnskoURc0x35MisFN7g+12X1lTQ8ZJK6mCIKw0J6Zn56dn5scnJ2vNuh8FTDACR5YYcgBHpcnfKGyEVKKAShQslB1L2cJy65Csc5aAyGiDCCZ3nGW+jWUQVKJ5UZ2KKpFS8kBm/LBWPgjlgVAfatum/H4rywqQmZybmH7lqedMlt98eO9HBO9H/r5x0vfqrXFr7Oz5M1/74pv94eD9Dz7qDeJv/v7v/e43vt7b2/3Oz3/5ycVLNs85F0DOOtLGyjCQiO99fOHjKzcHXP2T//IfvfjEE4g03N/ZXl1d6bG9zbos8ifGi4WWFp5wZE1REKSEggkPGEdER0jO2cI4S5Y0cgABRpOxDggdIgBzREVeOEsgEJ3TaWKsIUfkbDnj1A6MI2cckXW2dJknJDJZlg0GeW5j7X3W5jf2ck355F6y2N4+sbAwN79Qa7WqIBe79sFmwpMsFKCka1UDNT7Rmpkfm5yoNxt+JeJKImOWCEu8ASvLpgMJy9Gk9vHWxNHhfAGFkJyXw0XuiMg5Z7XJExNDoQSX/kTNnxHVpvI9LtjhWvsw5eIBRBrAgTXcuckKLk4zKuBodWFh6SQ4ff3BvX6va5DtEalK+OZvfOP8yTM7/e4TTz9ZCyo/+vFPHt15cPTcqd/62teI6Ac/e/vCJxetNowLImKIxpqxyclzx869d+nOxzevtqZn3/rmN88983QYRsNOe3t948JHF2/ce7TT7adZ/gOen5mAV86MnZmrSq6BjANjjSUUyBgw7qw9uGnIZKnDXDtpHCIwS0SOHJF1hMiZI1sU1llnrXPkLBhjHZEt4VTInLNkiQCsod6w2OqkOwPoFn5ig71EG4NEJo37Xcj2uB2vV+TMdBTWxxuxH7ZyE7NQNpt+dbJZm5psTEwEtQr3JGMcoDTVZQdK/ORGoLyDOhbKryOVshWHWrdAQkphrUUCx9CVgnzOFYXrIDdeNQqjSEUetwILILIk6HMuAQd5FgEBHADDelU0j6kJQ9d9EdTnwtr4ja3dTtLnnDnGOLmFY0d/462vBYHfSAezrbHLV69+/P4HhtOLLzzv0uztjz7++L1PTFYwhuCIiAxRc2LqjRdfnTsyn+143z7/xMsvvzy/OA8A3fbuw2vX3n3nFx9eud4bDMlqa+1AqFxOws7cjlZKb455+UTFRvWGF1Y4WnK6nLxZV5B1Re6MLQpH7uAaElwIxoGMcdpq7RwV2loL1qLWxjogYMaSIdCWhrmLCxfntNHP1/tFJ3UOZCCl4IVxBpACzloKKlDk/d3O9srE/FxUa4RVFdUCQOS1UE7Vm9PjtfFWUImEEq5U17NAiOgcIGcMHLFSyB8RAUdk9gMQHh4YVgERMASBiJxzIALHAIicI4ZEPM3RIYoA627oFUNjQ81qJCJk6rGl3K+WyUJIr1oJ2FxFn6/aR/sad1l+fHF+qtJ6//KlLI5BWyHk5qNHQ7TjrbFH3fs//v4PN7c3v/G73372zBOfXrz0y5/9Uqd54AeOrDXaAs3OzZ0/enL25ImlM8eX3JmxmZl6q1Xk+d766vULF37xy3dv3bufZxlzDoScP3L0mbPnpmutze2tv710a3Nvs171X3vq9MvNE6q7295Z1nkSSPQEGWPIIWPoABnLBYNyklKQzos8y622UBhICzvMzFBTWrhYO+1YbqGf6cQ4bWhY2NQ448BYAkABjDOdEnDGAMFjMOZhy3N1Th4URX837+3BxIzv84mmqvgQVjxV82UtlIEPHC1BSR+mkbN8WWPS6CsMeWn6dgDeIYDSspyglBlGAhCIDJGAC4bOMucsAGG5cTEGXZE5ljqtnahZTzAeUMlPK2OIgKPRPAAyEpJE3dojnm9n6g3R3+yYjFgDGDVazfrUXL/Xv/Ho7n/8j38WNmtvPPvi2tbGrWvXz77wzNe++KWdnd2PP7lo8vz0yZPVRiNJ8/3u/tETSyenZm9vrPitmmRqZbBbB4wHw7s3brz3ztuXL1/a220z6wRgY3r6hedffOr4qWHc/+Dip5/dulU4e/rME8+cOz83MXl3f+/Cp5v3ltet0ZKBFCgQFUfJERAb1Wh+cmKsFjnn0lxr7dLCdofp3iDuJmmcF6mxzpChEqxTzmAOBjKI5XCHM1YWKY4cQ+YLHJM0rlxVuEjySAkF2hWx04UXiLmpVncw7LsiRZM4E4HjQGgKYTQjS8CAccc4cea4ZCSAYYlnL6frCMARHLJSxR1G4yVARFGy9rhAcgwduLJodUQOnKNhTh6gURxAMCUYMsEFQ3S/ykkqf2IICIJYjfwZv5WOYdzsJh/cvXnl7mojqMzMN3Y7Ok6HezuDYC98uxfvdPa9WvSNr33dGvOzd97eWH40NT7xzDNPnX7qvGVifWd3ohKura34YZjvdH/Z3j13+rQEvH75yl/85V/dun7d5RkScE+dO3/+N7761litceGzK2+/++7O7vb8wpE3X371+Pzc9t7euxc/unX37n6nA8YAUAZADoicJgiqlSfOnDt7+uRYo2m17nS73Z3OZm9vo93bH3TzLC2rWTxYAB5cXVjmOAIgZIjIEctRmhBSCikZNIRtSQo5BQJDj4dKKF96nBOQ8MNqo9bR2W63w4fOC8NaWBEEPI/toA3DHgdE5QsvcFFNB5FVIXBOCIIx5Fw5G5qMIxQqyIRHxEf2fwiIIBBH/AcuGCfmyIEjcGQtWmvTQrSJpaBCVYt4gDByqMMRVxNHkIfRmyVCQslUDT0AlHwaRWjj7c3NJKgK5N1et+FXhIVhnt1fXXZEX/7yt44vLn38ycd3rl63hc6ybJAMVSU4duz4CXvy4cpqPYuz3uDC8v2vfOVLp+YXr9+4/hd/+dfXPruK2nDGW3PTX3z1tZeee04X+u9++pP3Pv449INvfPXrz55/qtDFzz/5+PK1q+29PbSWIwIHIuQElpFj4vTx41/+4htPPXHOD7x+r7f6cG2n3bux/Gh7ZztLY3CGE/CR4DbQ44a75I0wKhuEEjBFyIRQUkrGlaAKc1VuPXAcQDEWSiYF+mGkwsgpD6wHyoud2+53VDyYDSNTCXIt0/19vfMIOptYFJxL7kdsbBbG5ky1SVIBkBAiEuBnfT/eJRXQ2LyOWq4UtwRgJbjkc5vnkuHLy8a6jLa1mGjnGLcFYuFQOLROCI6lf+fnQH/lTwyBeUxwKaWygjc0PjFfuzpZv7a224v7RBSpoFFrsDRO08SvR88/9XQcDy9euJD0B1Lw3qB39dIVw8AJOHfyzMmjiwG53c7+F59+4ukTJ2/euf3dv/n72zfvgCYehc+/+OI3vvylucnJG7fvfPeHP3r06NG506ffeu2L9Wr1yq0bH168sLW+bo1mI3Wscu0A1jmvVnnxpZe//uWvLBxZsM60d3bv3n3w8aef3X60PBwMyeQM6NDL8mBXf3g8P9/Aj+oTxpkUQnHwsQgZ1AR5aDmC5NxTQkkuPakqNV5pOBU5zQ3wJNNS61mlF/h+NbfDodre6fTWN3R/i/KUO2JMyN19MT6A2gRJCYie4HMsr2S7Nt0zzUkb1MmvoRRQrkQYIqAoe6nHa04qy2PiB8JR1pI2juc6FZkQgpVQe3ZYM9OBOJwrIQsaKGeOcQeCKx+XZqO3np7NdfZoJyl0AUDj1bon5EZe+MpThb159eqDu/e0KQCks25jY73d3V9dX/vW7//ekbm53BUvPP1UFEaXPvvsJz/66er9ZUXcmxr/9u//3ldffUUivf/eh3/+3b/Pnf393/ndF544t7mz8xff/96t2zd1knAstevKPRE6Qgs0ubjwja9/7bWXX642GnE8XHu0/MmFSx9furqxs+Os5QCci9IFqjx8ow0jHcT2c6CaUefHGBfSF6zKjc+sx1CCE0CSoy+Y4sg5qiAMG+MsqOXE+okeDGKdJEu+O1ezM7Cetrd3evJRW+/1kjxzpIEZZM7wtM0HFr0dyxgAhQwTWVgWNxVX1VkJsoQW4Gi7ifwQXHJ4Rsszx5ARkRCsnBM7cs6YvNAyLwTngnFEcSAAhda4PNPGailQedyAiQ2qTHgpE8irrerzZ6d9t//+nfz6umgnxWZnzzmX5HEtMZ3bv0z6wxDyHMEa4xgDgLSTuTv3th6sdNa3usnwxJFjn3x04eqnV3Y3d8DYqFn/7T/+R9/+2tezdPjuO7/4T3/3g0qz9aff/tbC1ORHly//4Kc/21xdRSJENlLkGc2sgTg/++S5b33zG+fPP4ECdra2r1+78cGFT2/evTccDBmAYJyzUcCohJuW16wjAAuHfQKNaFylmIiQ0hMs5NZnzmOkmJMcQs4iKULFlUAupay2VGOK/Kgbp2vbnf32Lsa9Fssjkwy72XoP7rflZh9ibYxz4DgnJogxgyoZUppm1hHZvjWZgkFVzi8sTdVm6zJUgByRAXIGDIjzz8GmSwn4snPH0X86BOeQO4NAztmiyHlxYBBa3qKWYDg0G1v9pEiaDTHWipQvjPMHWSUciCaQ8FR1fPyZs5MLlb1Pm/pnt93ddifTdtzHl+foXLDsN8VRWf3prfSzzdTYshRzJ0+daoWVv3/7p2PNlp/DL372Tmd3V1tTFMXR2RMvPvEEA3vtypW/+fvvN5qtP/2n/5Sj+86Pf/zeBx8N9ruMiXKw4fAAHOWI+d7rr7/yrd/4xtzCXJany7cffPDhxQ8vXdlrt9E4NTJ+xlLh7hA0DAc9AJQLXUQAtMYgjtSBBWMex4iZEMljpDj5DCPJQskjyXzFlGRMBao2IaotYGI46A92l3FrTXW2Byy9l+jU2tUe9VJnLEdnkRwQAQIh1CXMSItod4j2cp1pvUs8q9ewMlWrjtWUj5wzRM6Ac+ScCc4EHvw4xHQdrqoZQ0LGODpmiAjJGV3kuRBCMMFLDIzRJo715m7ei4ee8sfHKjU/AoaJEzwugGesFoqo5k/Mz6tBq7VxdMJ9fBe2h/LEtPfy6frMlC8Fzo41jkz4f3+F/eJ+3EtM2Kg//8LzwzR58OB+7YRc1Q82t9bzNCnHwqsry9/5y79qNOrvf/LJ8oOHrz3/4oM7t3958eObN26Rtpwzj3MHoO3Iy4cc+PXaW1/78re+/rX6WGN/d+/SpSvvvPfRnfsPizTl5RD6czCcUX9ejkMRlFAEZA9tMckxhoILBsQYBAwj4QJOPiPFqCx8AoGBQF+i4oAM0Yt41OJhDZBh0q+0V8TOw8EwXTcmR2aIZ0YQMsbYAXaLgByCC5ydBxrjru2xu+S2GPBa0Jierk1M+dUqU5IJzjkTgnPBhOCCMXEIqCyHuOXE6OA6BABkHBgK5ywyBHC6jKgUnpCcIefc8+XshD83BuPjfi0MQ99HdIqcG7SF6kIUotdg0TjypUa1/uxEb2mh2+tlUSWotyqSE5gcJCzOef84bIyF9J3PBhNHl04cPfrehx8Oe72PL3/CGNNpNtrPIia9/vf/9u+AoTUWAS9++sknVy6kaYqWkCERSi6qftBJs6Rwzrmo0fzt3/32W1/6ovLVozsP3nnv/Xc/vri/20YiwR7bgMMBmHW0TkAKg3CsVvOY2O13O3F/5AcGxBgoDj6SxyHg5DOnGChGkqHk4AlQAkV5XCQKIYQXsbCG0ktzY+IhDHtUxFqbTqILVEJ6THiCCUckOfnEgGxhXW5sz5od1FWwMxxrNZE3PDbW8ubnw9nZSrWqlJRSSMGVFJwzIRhn7Ndlog42XiPGS7lLQ6QStocIzhmtc10oqyyQkII166ri1zirSJ9HkkuTuyxmWcx7beb3TKVCvMG4Qr+FYVXVTMvf89vrSIXySod1Sya2BK3x4NvPVyZDvV6rFYPeyvKKM6bQpR03P3hdQIjOWrAlGNHlWVzSbsoBJmjKMI88n5xz1gaN5u/+/u++9cXXclNcePfiz9/78NbtO1ma8lJBi0b1/AHYHKicp3O2MDt7enahP+g/3FxPipwBjkggDBSDSFDE0eNOAEgGHieByBkKxhRnUjAhUEnm+UJ5Pgsrwg8tsEGhY8cLWc+jIrMxmlQQShVUZdAi7qxBcjUy0rl9svvSFQxWHMtzOOHh0SkYP4o0PVZMzutKkylfKCEVV0JIwaXgXHDOUBzWQaNjeph0HhOJRu8ZgJAcIjirdZHnmeSMCcE8n/m+zwAYGT/r+0U/29/JttYgRaVCVxRYdIEp5A5FCMB46FQ2oGyXgUUmUAihBOqcXBxW8PWn6u1kffnOD9zufZ9jYdkhcOlxO3Tg9HLY1z+mYQBkeb6h246siKrf/J1vf/2NL25sb/74Zz//8OKnvXaXEUnGD8q4x4iNEofjrGWCv/zC82+++NKDhw8+uX2122kzQMnR4xhyiAQEHAQ6yVEgcCCJJFj5dCBnyBA4ohLM90UUheRXXFABIS2gYRKjZrRwmo/NT+zuZ3u7cZpw5FPgz+ZUGDckp2yhTNFQMD3Go4qXpyLtUl6gBzzyQltpYtTgQchLj2gllRRCcFFmXc4/R2o4lKE+BMsffFil9dHIhmx0ieaFFqJgDD0uRimLaavSnt++ZjZXkg7ZcKFSYYLnpGPOC844M1gkqctSISLyc3AJWYeATHjIhC0y54zw+DiLA7z7x0/qz2r+lU33oGu6mXPWlujycnTpiKy1ZW0CcEAiPlCLs9YA42+8/sXfeO2Vuw/u/+V3/vb69ZtOG8XFYZ+BMAKPU7m0doRAlshX3vnjx8eblR/9/EHSa9cEBAJDhTXJQomKkSgfewKOJEatTGnMgIKBZMiZk5IFURA0mjmrWRlpx4AYKlEdmwirdZNrEWwlwMz+HhXWFKZnTUFFm6wDQo4VX0xE4kTF87jf64BLKOhL3K9RpQJVpSqKKymVVEoIIZQsLew5ZweVLR1gcg9wXaPPaLQVPSj3yzaGyDmrdZEVgnOOjnjqrDGFb7XKMpljis1+s2K9hooYw11WPEK0QgTCpmLvs72dPTF+JKhGZHJ0RVlpA5NMAKAmR+Cs55ulaTtThS8sskdteXULbuzZrYFNjEPggEBGY/lifgVj+Pi0McGqUl2+eOlvf/aTe3fucQLOGTlT3oxApdB5WcvTwcoJBENusk8uvrf18Ea69fBYlUUSQik8CZKB4ijKTpvIjaRiyNGBCwYC5yA4eRKDUAW1qqw0u0Wtl3s6Bc8DJ2VQVcZaPUytVJrI5to6u2t1l2nHIAfPOg5AKTIvxcjxxcxNFNoTupEIueqTKbDmWAtRSuUpKbhSQpank3Fkh33ngZbC4fCDPS4ToBx1jay0ywW4NUbnuuCMY65pP2uzZKvlLFkRi7F0bB55IJXnmHMZR7PnqEsopMu8+GF/dTcB69fOo6ygi0fO6Y4O/Hk4Y5Lz3EHGpR5rsFaNn5llu325si8edNz6gPZi6GSQaLKOwDkHDg6vCUQgYODIuJ/+/B1C6Pf7gogxBo4sGoDSRhEAGAJyBhwZBxCMQo5VBRUFXnd5OFxd9Kwfcs5QchQceWlSgcCBnIO8oLwgCwyg1PAGzjDwWOjzKPQq9ZpfrRv0V3pwb5DW48G0CVtjMow8iayb99b3dra3VrPBAIVEghxLuT3FARDRIqymRTbIIiyOeV2lUiJMt61Tc8KS4hylKEshJbkoj6bgeMi+RjgEFoxupHLE/ngXNqorS3NHKrELmnPgPIc0Klaj9JO6aSuxmMDx1GswirK+0cx6BquFjMCYIskNkAh5AAItoCQuEBRzKenYudyZDJy1BomQMSGUj4i60M7pCudRhAvT7IWU9RNqD2GnTxsDttzD3dj2NaSaCkcHFoej15gkMZGTjB9ufhkgY8gRJQPFQSEEwoUcFINAYigxUswTKDkwIEQmOXBEZMAYKI6E5awWraG+Bc1YKTZRmmUGHqtV/TAKokoUVGpCyCTO13aTi7sY9Omc9J+qREGEgJDrojfodva3KM+4CgQXnCtEBc4gckDmCAvifYJ9yavCT53RIEStNjbZnG5EIvKkp5QSQoqyuOWcl42jOGShjDLtY+j7AWqkHFoeoj1H1ymRtUbnxMhncb3YrbjNUCagTZHbvg4GQ9xY6XeL/elxWqjJOaVC7KdAWXTSzIMMm4jkmA/CcwU5GoLNkApyjkwBwIErLhVjHJi21jrjDvR5SXquWaOlSZfnNEhcN8V2KtoJ9jIaFhTnLjHOOFZYlluyltxBgyEZSoY+B49RICCSGCgUjEkGHIkzkBw9hYwhA1fqpAnOEIEYYww8zgDJaNCFMQQIZeEjGDkA8iSvVoN6s+5XKkp5iFgkw8GATK4azGOUkynIGQbIhAzDaKw5Vq01uzvrNus7oRiTyAQXijGBnAOgc5Qyf4NaXWNXXd6V4Xhz4bUjJ2YnWyLyPU9KJYXkUsgSHT0K52P+wq+Dcg/jSqOg0miODUjAGDjrsYTyTjfZSTr3ISFbfX6Mcr+3Zbdv3nzUubnc5+F+8OLc1NRMIjxhHkrXxrDG2RmkjJwmjJwIyFmSOUMBGLtk6KxBBEQN4CxZcNoWhqgcZHFEQuYQ0JOCCyeVbTW9RQe5dtqgtSwrXJxZYzEvMM6csVRud4lIlrr3o2fW+RKV4kRIZLHcCGLJY2clxoqcw4NLVXDOELS2xlpjXWHAEXpKEjAmUAnhh15Ur4fVmlQeGZMnA6fzLI+qlehso+FVGmOtqOJLzkBKPj7WPHPqDDl3987V9saKKRIGGjjn1lR5mKGOyRAgE5VVO1bwypoQWnnt1sxLszO8XlG+Jz1R4twPwlnejY+HfOWCYPRmf40feLCqfWyhi0SS2wk1EOnqx2u3f/bh3Uf65IY//5tj2b+ga3M7dz96dFRreexEa34yqDRaIBpF7HAYC0q4p8iANQWxzMhAqhpwgc6BGBTpqs67QpXDU2RgjEmSXm4M8yvEFJQuhkJKzjjjFtABSgFcSO0cWcAa+bpg1lprXZ6jsaM2zBEwUc4mEZCsdZwzxhmgsNqQM45KJiUjZICMARhtSmkJJAtAxkKaF4V2xgAQKaWkH3LJpRRCCaG8UjDc6sLkiSkS7oAz0ahVGtVWVG9VmtUoEIIjZxhWgoXFGc+T9WrjQePW9vqDfq9NxkwYnCmwo2AFdA6gKenIuMMj7VdgZuLEianF6UYU+corL04uBJeiHA1xZPg4nA7oc6iTQ9bRYXsNCOC0sc4iEIITCMKzkcrrtDvhHt26u/fR7gR4m2+P5d+s7zbj25kesuZiUG8INAiWgpphS2ATGtyUECPjQAg6calzfsBEQETOoHYqy/JAoFANhgiaKd/4vk1jE3djFLkKfO6hkD6XilkHyFwJx7KGSlNnRC4QGRdSCGmsgXI/a8v1n2CeEojkrAPGABki0wUZbYjQWrBkyzTKkBnJnUGjdW4KY7FwQjvmGGOKhYEQfqTCGjIOAI4sINmisMYgOeZ0wAUKlAX3PCkqQbUWBFEghSwhP8jQC7zZ+el6rTY9PbG2sri68mjQ3q3FuYwdQkbIBQvmGa+w4UajOZiNjp0cf+tEY2E8DKPA81RZAUkpBWNSSETGEQFcOSOkkcXfAaFzFNTSDYUAAaw1VuuiyJ01CM6TTDiXeSZwIJ2p8fx4dVlLt7XS/Q/YmcTwSjVPar3x4V5zN/SiQEa+V5tA8YQhgN4VYWMmq8h9MKmJExGMMSZMkhfD3FkEURWVKYao8z4Ck0HhnEVOhMYLmQoirhQAAjnOAYDAFOgMOAJ0zpEz2hh3WKgjAFiHBFJyJaUUDgGIESBDLpABp6JwhSMSjDsHgITSY4gaQJPR2hAwxyRwz5MKOedCMCmFCrkIiiwfDvrGZFxw30dP+gyRGYfkrENthXHoIZOCS8Y4Y5wxZOiMKXTBEOv1SiU60oyi8Wq9vbOTdXppZ28YJzFrLWDlmxktklubrW0eq8wcCU6MB9VK4PueklIKUcpgCy4444yBcIbFHUFEjKBEcdJo0EWHG7NyuO+cM9rkWa7T1OgcyBkpwKNdsrGrrPYnT5/K/vlCAdmN/99P85/etRUujNWMdW4aapCYnJ4FAOb53FsARK2Hdv+Ssl0MpxkP0fRsssdtld0v9FaPNa3wWyKaQqkg7ZMDy3Ydc35diaCuwjHhhcC4K4YIDpmHhhlnkDuO6IisMc7kzlgABuhKQiQieBJ9D6QkhhkAAhMoJZc+E0KKQjCwjjHkxlpHQAwtcg7MgmGkuBTEfMECxxVXSgjJhECUrjBx1k3jvmToB34l8JVSOkuLIiOjO6n3MIeCILAOyXG0DC0ygUDOmiSNdZKBJWOh1x8wZifrlR7jhcKK5baYpFgeEeapQTIpg6uo0eUMSXGupFBKqIN6VnDGEBkZ1d+orn4oDouewyL2sMod5V5HRusiz4ssN1lOzjIoQY2sY7Fn6wUce+Fc67VjeyK5vroyuLOidnPwhhrSbL2TdMammfSVFwopfYGKRdmgPtj1bbolrRWVGSGqSCl2nVgO+dCDcQ+lcACIEmQkosmgpYW/x2SkKhPcryJXgODygPuZtcDyGBiXPODEnLNFGgsqaVHs0A9RBn4Q+r5kDApCh4DIfRY0VDTJBdPxXtLfNxqIwFhjiBmsOPIQODckcwIrGAmH0iFDzgBKb2mr86HJBgEzlaji+VKCNnGaJkmeFZkW94dy2YqGR5QPZaZ9byD9aQMKAaUUHpdx2n3w6NHK+kY973+hZhu+f7fwxo9GRxZbX4irH17UNx4MlyCdyofb++1rNFQBb9XC0PeYlByBIzIsLXM0xp3K6kfi5r8Th23TAYMFDsRMy3RFzpgiz7M0s1lGxgIRcSoZG1oDw7A5fSyS/VxECDsvhlurQv8wEwOLTBc5EPqBX6+rwOdCKplXKeEV0/dreZpiGgPfh2BCqjGoI53qe31mwgjI2bRHRQrOIDlVneR+E4XH/Dr3A+QcCJlfJ1cwbTAbWB4IqR2A0xkxRFk4C0xIwcv7UvnVZlCpCWaZSwEsIkcVieq8DFtgYzPwgYs8y4zlSJyhD1ghkNyhGyZOD3RmCp1bZMgEODJZQs4FnnTGeJQzxQQzpJMsozQpksxkzu+4egfrvqeqvJDFpj8cBqoJkU9+1THBuaxW6yYttLHrK3ebxfbpGa242FWtp2cWv3AK+kXsd/Cne8HpmbGv1y++xts7m0sX43iYJqeOL0yNtWqRL6Uoq1OrC3/zbvHZ983AiJJiCHDoT4WHXg9AQNaawhS5yZMsHw6KOCWynKEveOgxUpw1p7XXANfb6NtWe24h3fhaunfX8YsAgvP5xYXjZ85Um02pPM45IBrGjdfEySfBO2qSFUw3nNtzrkFBgx3zo+G4tQFwYdKOMxmQRS658BEYouJcMO6j9FCoEW1VGxRdTj4XKbPWSh+Fz7UmAMYVl5JxLryKX295YU0wizZBMoxL9Kq8MovCp6JLQNygUAWQZKCApCSFjplCu94g7e1nSW6cE56v/AoXLEejTQookUhyYgjgrM0pzd0whZ72B1DLIGoIz3GyeTfpDGPblYJEJYeAgCEhMMkrrcaxYyd7na7ahA3TjgfFDdtpLNPJ2UGR6sIeuVE7/aNG7SvzO2foyhvr+spy9mF/6/rtqYmx8VqjwgVHcjbPk8GA1u75D2/NHD16OBUapdxSDxdL5pm1VpuiKIzWOs131jdWl1f7SWYcSQ5Vn9ea9dq5yb4fWMbP6OzY+vrM3pgN0rqSi5X60sljr7/24hNnz4VRFRknIA3K4WQR+d4cqAlN3UW39gkN77gic6YQKmJ+3ZdNLoI8HWbdVZO1kUtUVQIAPUQAYMQoRHLEPUIBUpKxqLQA5pwD7iH3mNQEiEJx4QkhuFTSqwgvZGCQAYJlMhDRFAYNQO4QKc/B04iOAScQ3KAtDHOOmZyyPjOJxyD0lAp86UlkIpTM5IqB1bnOTMoIOOBQu+4QOrnXNYGzrO5M1cVbzmxglqs4qpIcDMPhqlyqwtgk+QEwrnz/6NEjtdDfW1tY2V3rP1hrrnWLdX3t3s6d9eRHdzwnsrc3/AvVaEmypWr7v/pio+/hT65s//zjwrgSY+3QWmeMzVJfFH/4bPJYbfqgpj3Y4Jblv9amKKyxCJCn2frq2upOe5Cn2hScQVCJvE3Wm302A/VktvVkZ7u1nrSF6npqaaL1yvknzh45GvpekWdMKkJFwB2rgh9I5QgAhE/d/by/o9N9a3asCpmUyOugWkK2PPRZPzBFG0BzHmhti7ivGAcxICZARcADQo+KzBSxLRJyzlkD1pDRRMTAIQJRBkSUE0pkaEAPOToupeAIJiYsR+l6NFC3moyj3Jp0aK0WjDcqSlIzzyxyJaQkRCLHJCOuyBmBgFYigTG8n8JOJjpFgCk2ktyPk0FBD0W+JfMaN3aLEjHUjT72tTv5BGuNR5XID/xKvdKoh4vzE8P94/7CzpHtnenj7b7/6NZqdybZm6tcvNqp/OWNzWPB9NSSfOV86Dy3001/eWmYxnZkwgrEyBVFfvJE9atPgoARuXdU0x6WQuSo3EKRdUgkpKrVmlEQoDW2KKxOOMNE59nln9q7l5lXXSPTSTeljsuVU9jd++z+HayHx8SSnw+rztRqTaZ84gjIkXMAQL/CJk8Kxs1wQw+XzXCXczJFwQstvJAxD6MZLn3BnRA+t844R8YURYLgUKYgAod+Puxngx1bpOVFj86aIgXnpB+woIoSBYE0wK3kpCHf42CkAuHqYAunM9JE3bbtdXRmizx1xjhgaJ0npBIR9708za3QUA77ELBUQmOIJAWXUiidm27ftTXvYeikiArj8vRhmi5jspFntjAbXDrnO5fp4YZHnutkjdmpU4sLk/Pzgd8MwqBeDafGm978XCXps6Av6cnjbPuk+mxs79PvDYJ7cXO4fXYhd/R0rxd29/ZMURREeCRi49I+GJi9zGijiyJN7NKBUwMeLqtHKkJA4Bw560pQNQpeqVdbrZZcWVMMvt2snwL7Tl7ccwkbphCXfA+XIwIgGZPt733w0XtjR2aee/J8YXVvb58D+pUaF7IcLyIieB5NzGB9TGWx6azq3dt55z709tigI/2ASR+YlCIiFYIfSkYCgKzVaa9IujbrE8uMw6TfywZ7zmjkgjMEkxk95Aw9jzxV84NASicFeIpzYLZwzBVSSCEEmcTle8ne9nB3N03JknDOMaF8v+pIFoVJ4izLtNEWgazRjqwUEiUnAucQgROhdtjPcTtjXRaxSjXkSoQ2FoN1qR/2ulpnHLHjnQi9J/fNXtveht12Kx580eFZdazrvYzBSR6OMeEJT/Iw0FDvo7Gkj6j+kfHG1K6rLa9/dJfNr1dhPfsR7H9U3X33vujHsODj/+loeq6W/cUD+f9+hGmudweNh/Di52DTnx/aEjjnjLWGyFKpxgFhrbKwuLixtU1r2dcbldeKgUnTLcEzhoIxhkDEnBstkZErYMIXvpCVewX/eGX3yV735GReqwR+GEjPF0IwximooA+iUmfVBjRmoX0y375r9m/xfodjjGCZCnlQ8ytWBb70KzzwBa+kuYx7m4wNc+2KPANUTHoMBbgCmQ0qE36lVmlNRc1JJSW4IZeeV51kzuS6ixDxygSTgXOJLbJ00M0zy1VDKZ+QETFrMUuLZBjrwjhiSBwsmcJoUxTccCGtc9qQcSrOoJNQ38o+1qhSj4JIeb5kQk0XY6tqZznv7GcALPDm54IXQxN34sEguf2Ppop/3EptvnVpPc9ER7MndGVW+QHzPOFx5EwhhH61WnHVRvp65eOjuDO4t3Fln/3tNbwPQSMTC6A9lSxWkqfnqR+bv1/lSa357Ctfmz3yBcEYM8YAQun1wA71NZ0z1lkLJTuCo3WBN3fsyEvGXnD2l53t9kBfMi5FRoiHFG/uCessQdStP51A8J3L+yvy+uVk9taamQyT3z/V+9IR1RxrRLWGH4ZSSsYQCZExYBXPC0RljDXm890lvXOnaN+DZJP6e8ZuiqAa1ptBpYmqOiwqm+usv63Hqjqoel444QceZ0wncZF2pKpW62NBva6iqh9GDB0Y4F4IXDpyqKpceChCXSQ2TdIcNFWYqqKqAoLRmc51GudpmjntnCVtjLVkLGW5LaxxBAR2WEA/w04atodBz0gR+NWxqBZFUS0KwtDzQ8F5pVHXzt1I4yTp9/TGllzPCqdNfr6m//hEOlmDC7vFve5qIFjFa3iyJf0AhQAukSEyQj+McbrHn6miaA4vX30q/Xi69ma48N9CWF1NPl59+D/1bv90Hac92Ldha3Z66omXvvzGF6cnp4SU0pWaGyO08OePKAEAZ1wgcQQHDqrR0bMnFYMLH3/4s26/Y5EheCNMp1NVb+rZ41zJ23eSHXMEoHHr0b27D/+OggmC6W30LiTstPWlnqjkPRlVqTpmg2jkrYWMGLAw9D1P1JpmfCnfO5Nt3y127sZbd017y293lbepQW30a+8/yJd32lNVemap8tQJj3PhIMuSHthChB7jQC6nAixmDpkQHHSiezEAQ1LOybSzl6d9k2bpIIuHvCiQ8sxYWyRpUbg8K4pcO0OFtmlh0oJyh9qBIZYTT0ilLugUwSCZHKRN58JIyqYwtbqoT1QrtaofBJzLamW20xnfaPu5/jDOH9y0f4cgE7d1riGbY0v3MfwPXXnbV0t5cDLB+YIEMI4HiB5CYixRFUPz3WaUn1hK1W6zB8/p6LyWciEpbnlP9NlHKqvyhjsx8coLR2ePHZ+dGjdAwg88a22h9agGGq03LTlHB/qM9vEwHkXkHz1z0lMyqtdvPri/2+2m2gpGEslamB6vHa/Xkkc3ezsfD1zN5l2Vb0h3zYnQqVZCwX2cmqJjk8O44cW7lfOdsVOs3vK8UAgJJd6GcSmkCCLRGPemjmV752D1Vn/9XtLbHvSG6JLAJIse7gp3fceu9bu9QXFuVlW83OO553ErIWeGjO+UMJJzrgSXzmprCuSeEL61Lo8HaZzqApLYxqm1DhGcNqS1K4zLM5OkRZzoNDe5w4SEFYEI6jyo56isFyq/OiUqE7ZZ5FVygR+I8SkzMcsr9TAMQ6EkEu/xcOHIkVPp7BbW0t51IfRYhRbZmDe/eGn6Kx8lrX9feRjObQatPMpTf2+Pc8aoFvmBRDLOWQJUwsgoCYVltbFoMUgynerVjHDJDJ5svKrPDhSvVbywEi36Fe77GrAfxyL0/SIvrLXWlU4so4AeKHM4IHLkGCNGgEjIkFeD+TMnGuNjx5aO3Lpz+/bKyn6/nzjbHCSvvXf5eE0ky53a0N2XlU0D2hRjJE5DJVeznV37bvZQDzpjc/3T6tG+v7c5k1aOnWzOzLOoipxZNxIEAM5lVGG+L2pNNbEUHdvL2ltJezvrbvN0/4nGcG4iX25nl7fin95NlreT52bFbNNWAkumY/JBoaRQ8sC4AkxhgED6EWOySPM0HhaFzQtIUpYZDsAJMDeUayiMS3I7iF0vIUhZYP24WcPGZHV2vj4+gZ4vPM8PQ+X7nHnAPM59pYQXoAq48oTgwtfWHxbdkPdnap2B6g3f8qsnFsP282OD35naPdV0/Sj5bnesOlX9v76Unw52h731rLvv3R0HMU0iSJ3f7cGQdPV4WJ2KPF8wzlXoo1SuQr0R+JAWiRxHyQEAMuK5Q0eOnBFhEOjCGGOd1ocSfqOjWEI13IGBB8MDtCsxX1VnJs40q3MLcycePrh1996j9TXf6MEubKwMAfjxVmtibGLd8dX93iuc/nfTrU5w8oON/Afba3/zyc0rt9wzY1Pj1blsZXdif3j0bDE5P89Db9fEJs8nRRgFEZcKkbEgCJSv6s3KzJEiTfNhPx10ikHXG/Za8XBqd/Dhvc0si/OqikVcJO0k6YVeIiVyIREZYEkgY1wpZQpCbXWByITkhSFARsSTApKC4gJjywz4GpUJFQ+9c1t8ftM8bAQ703MTx5cmpqe8KPCkOoBbSSEk44yzchDOShG8sXY8tdPfdeyOCXcJZsPxWSLMku5gdWZ29Th/sLN8Y/7Rmd+cnP2dNKwr3Q7WdUh2P1p5W9y+VonV2ftF8yFunnvBPfXSzMTchF+tofSAMcehYIwxIAdky+WeI0B0KAnAoQQSvu9rY/KisNZqa0s0OAMGjJfAYnpM3EZkI9ucMi3zIGjOz1bHWotHjmytPEp6cR9VVhSeyasVtdBqngBvvzN4wdv5wvQ9obZf7Kg372/99YPiJ225lrOjwbD34L66sfncjYvjx0/D4twtng7b7df98bNzxxqT01Gt7nk+cs4UopTMD1WtHuhpUxS6yE1RNLLs6ItJlmbcFZQnNNxj/a0s3kzTfZblAiwiSMk93yMuteNEBCCZlMZizlkisOfkEHgqpakH6IVRWA8qdT8IKyCf3DNT9wb+uKufna4tzdebTS/wR1uMA3AOMmQHfISSYckzB5mRfaoVeK7Te7hxY7d7ezC81q+uP3jCVYR7+97Wz2/rY2uZ2zuXBvLRETnxfBA049vs4Q/3ZBBVdGDMGInxmogilJ5lEkpcOIBGBwS5dcYhElpCArQjqB6CQxF4vtE6C/28KIwxbkTGQMYOmduPR0UHGKoDtzMiQi6iYNyfa4y3KC+0ccYYtIVAEoJbZAtzEy03ue83Jv3V+cne3BQ/Oi4nN4/eU7PoSdULX2D4dfPRuz+/8O+L6U6tFlD21HMtqK7m7Dg3R11lgqmqUnJkE8wEE0J6vl+qrDgL5Jy11lhyloxxReaSgU26Lh06naPJwOZW51ma5FlRGG0J0SkjvKLm2VYgZNQMoskgUmHkBaEXBoEf7OzDo63hQiMLTppKwz8+P+7Xq0p5XJY0CDz890FFcbBVJOgL+qy/fuPj9jKbfY7deUn8/C8GW72h/daLR557upbl9y/Y9s1e0Tc735+cD9jYn91/WWH1GXb1k631OKSzyXJI7cqJM7Nn57xWLRMBWKaQFJIrQcGA2pC1iAwLBEQ3UsxEtMSFktzz/MDLM98zxhqjwTlbTv4YA4bgDgfyQMAcAD8AKOABDZIY42HIQl85C9aSMSVjXUIpmBuuy+kkeLEZUDjZrk+nX6X5l5vzyg9tUSzFD07ufk9cfnjxbu1RXx5bwn/ycrS0YHJ6VJjdtS15absh/enxsWa1Vg39UCjJBGeMExcM6PPV+ONfOwe21HfIiyLP0yFLEkxyrgsHjAnBlCeUL5Qn/UB4SkjFueBCCCGGGXt7ufe3V9b+65ns5ZONsfnxxtSkF/jIGALjjEHJyEYEYFTKNT02IXKptW9v3/uPH/31sWr0r77YO3mif6oC7z048acTb7S6+Z2V5cUNs6DTddf9N+H6XoVtbM+c+pSfSvpqB17Uk1/pi6u63Xf9octIex6XCtEa0EiWnHEwMrh1jBwS0OGxI8YcgECb+Z7K/SDIizwvrDUlV5VGvF0c4XARCNhomV2Cvw6fTCjTr3OAjHEAJERyFp0DIuNcxnGoAqqO5fW673uOywnlTamAcY5AXjrfbi9UZnf+WRb0NXDex7HhAAdo9lixiqur7/7N8HYnnJ2dmp6Znpqfm5+fnZudbY6NqSBkvGxy4PNw+BK9UUL3iUg6Gxhbs9bZUtMLABmWSCHGSk4d46PtIRH/aF9/94HOt3ptP9l30ZjvS+Up6THGCDDO7WpPS3DTISpV/iHlLA3K+ZlleGzC+6PFjPf3ySAfx6+cpaSbbj/qBettd2X3zB6d4Xa531u5dDuVK8w+esH33urdaUq+HmY3Ws301Hx4aq5aDQOpSgE668ABWXJuhPIHVzrmEDEiYIwYA+cAQAz2lmvTpwLfK3SQFbkxxjjCkYh5yS0e1UcOAJxjDLDEkJcntvwoieEIGk4ACMgBwCESWUSWOyJtbJFbIutFKqgoKZGzEpJlwnpfnRMTp04AApLROiuGD9O9rL8J7c2Jm41/dPXRctJjd9p9tveT6L31KfHEubNvffUr584/GVVrDoCsJWMQkQmJokRBcUBW8jEEAqgDufrR04eEjxV5GJZ+MOjIDnrx5Tu7vevXJ9qXk4osiinJlSlwUBilUHlcm+J+u/vdh/mcgDem7akJv1KpKCkEs04XjlibMjEFf/QE17dw7SoIBeM1rLW2Plj/4cCEfn22Px02Pf+5En7OuQgqzXq1V31zPqr79YloanpqrCmiAKR0WMpUOBqlQgasvEbLeI4Y4Yd0GwAQW1d/FDRmfFXLVREGflFoYwzYEQUHRgIArBQTNOSYA8ZLOukITA2IxJDcQYE0ogVxcOU3kHHOGefSjIYxeAEo3xOSA8apvrDaVVScGfOUJ7nknHPhB+CioDqu60d52J/e2Vg4f+e5tT3meCePN83ta9uPPtXXT509d+L0OZ/Iab2xsnLn/j0kmp2dnZ6artXryg9GMLcyKx4ULQf55vF0+iBJIxHlWfLp5U8u/sV3qzceYbHz6b5PMg+8xkLlfNqHjGf1pfRIa/NNvPf2dvXfXhb6xHD+lGlXPR5U55VLhzvLSXhD0C9NrPnkm4NhvAL3FsX0ov2tl9xzu7tr8al284V6M3g1nHrZHyMpQEnuRZ7yqwpqHKeEElwapNyScW50GA/w6lBKz44eS+IcqER3I9LBexHdmx+2jzw7c+oN3/cC7edZrvOiMLac85XfxBAtlEgca7Nkv9ct0gQRo9ALQ98PwogDmiITPkmBBzN9LI1DHABjjkjnRRLHzA+5FzIuksJ991bvf/j+jbN+5//w+szs7FSt3vD9EpDJuUKpFPOjYVh1x8ZNZ+i0HWbZ08lTtaJfrVdPnDwWVCqM8TSPt/f2Ln786cXLl6vV8Ozp08dOHJ+dW5ianBxvNSu1mh+ETEpkUILgy/Ad0lmQ0MHodsmznEA/OVVJ7va6cdzrxD9/50ePlvdenPu9CVrK0/SJ49sTJ6+v9T9xF4KX+k98wT2xv+niKxcGnfWaN0EPh7ur+fS5qbln/Vs08bzZoFohT1T2onywlU7XoFVfvevsjazapfOOR0F9ot5oKs8HxhzDsrTTRNY548ABjIAieMhbHP0DoyPKRhXN50CXAtJ497Mft+bO+cFY7vlBkGeFttrYg7azfJIBwZGzhVm9d++zy5c297uFMb7i9WrwhaXWv3yK8vb2R+65dPacH/lC8nL+i44Bd+CgFJGFNE+HQ+GHXKi7ffG/XOum7e7SUQPIhFRCyDLpEQAROiAmmG5VoRYa68haTu6cc2eIGGeMcyY4IkrfP3f67JiqhEF45eKnH/3yw0sfrTYap1ilNzbrHz1x6syR2amJyWq93qrWVBhwz2OMIZSsOEZIQK6U1VG+/8qzXzg9vujJ4KP33h/GwySL79++sPpgVcm5V9nUv7o1viM2/mdc30zV/+2FL10RZ//vN/q1rfxl6b/VfFTsxF/ITvXW/aS5M7e7fzHFt50Yv92oP8LO3ZWvTdqvnkxr4uFn6eK7w9vTgTl39klPBUIIhkLbsi5mdAAmADgkv8CBWD9AKSlDpYbyCO3uSl9WAHAkwOi9axfl3DtnX/kvfM/LPN/3tc4LrQ2MLJHKtzsCVudxsru+ttOLHXJH+r62eof9SY12VpLvruzC3PLSkYXZ2dl6o6l8jyPPCszz3JPEBddFAYOYeQPknnLhH5yoNI6cenJCTU/UwygSgsPBtrWsF235uiVHycBxAcAPl+2jM0ZKebKlFqLoD6fG3vzim+vrm73NyXR57Gf33vlwbx/ubE/mPzpS0f/iqcbk0sTd6tnxuYWpejWvz1FY44ILrf1+agCKQIEUufY6g/qsfP6Nsw0t9rYH3V5/Nu03zJDmhWjMh4MbO52+252M/rx6mlPzOWvf2ZM7LYnBg50Xly6Nf+N92e9Xrs3Hmyuarqbe89e/1ZBjd4Z/+eHO9V/ssIkjEz9eXLzaM6+mZpCZ1JiQgB+S9kbodUAA9jneLRzQ4cvi+WCZCVTO7JwrGbCMofjw5v56J6Xd//VfHX1mbvp47vlFoIu8MIXOGCcwI4P0klupvPlTTzw/GPLLF7Z7XWIirFXWU/Mvf1aomcU7RYJXLt2+d2t8bGxuZnZhZkYFY73h9Ga3/fQpOTNVBWtzRyAYcFmN+G8fDwNV8T0upCgfyDIdHF5vIymYXxVXftzojW4VQEDpqam5+cmp2VPni+62uH3F3PafXqHYEpjV1ZPm2jf1TXMZ0r0fTZ+per7/c/aSfPr5V4/5Ym9Qu+5XKhNp099Bc3Nf/vLDbPUOBP7c4snakaOhHpy/fd/urO1qkQyfto356BufwQ01dOzGc2y8MJTk/nA5/+9Wi94pb72a3+isQKXgc1OV8BGPaSyYfX76xfba9sWte2uPiupAu7z7heNPvXby6YXZ6Ua9opQqh3GPmQcMENhhOA9pyaOPwZUC/WVvNKpWRmRyhuKvr7bT3GZ3L04+/ef/+k//deD7hc6LINB5oVRutHZ2NIFHxhChOt469/qbzenZzy68vxbm+rWnk6vLt649olMnRKPHPr4zHGZxsrG2sX0tuOG4Z2G2XmmcGp/PIgSGwJi1GggjIL/e4DzA0rivXKA/fgbpcUT/N/x8R9OMgwgzZCCZJ2RzDo4r/MMji18yCWNQz//wefP0QvKXGzfWXp/KokH2o4vwl4OtP5n+bGwiuHRp4/5Pj78++dJ8syE21zY2Hz3ay+/lUAC71cknJmpAK+s73V5nZVcmf0K1596w/5fTset3CP/H9c73/l+rT6bJfFbA25VxXdf9O3/Ort1S854IPSyMEOl9+5MmU9RIjvhL9VBOz8weP3f23FNPj42NI+flDssBjYQCDhIpjIpteEyJc6Ugzii1IiBHRMZHZVI5SsmN6CUaCJ2hv/6zv/r6m1976swLeeEXvi58rwj8Is+1tc5R2csBAiHzKtHCk0/Vpic/o+3V5xfzhbnBVjt+/7ZivFQYt8aZzPbSnMARbEPefPSwL2ApqleZVHmWal1YpxkVITEoZC4nGBPcGeISpCznip87o6M9D43uDDqQecSDZglx5FxKAExKnJqWk5OTDKiw+cM+yzppb/N0a2qr6JtP7sOPe97rXxr76hna3Xz0n97v/921wQJ78N8szL5lOr+1t/Z04v4NsR8w1tuArW0keA8BgMy2of/lU1lAZVx53AVxjDe2Ny8FC1eOnon66ydmJ+tnj/Y2OhPibCsKojBQx56t+GFUadXq8sngBc9/MQhUUIm8qIJSlEErKcOP6+2DArwcrFrr6OCHIyIEhuxA66nUfrCF1kVe5HmWJWmSxIIJEXpiLIjGKX7w/t+eP3428P28KPzAz3Ode1kJABtlahyxxoFjdX7upG7Zfppb3MmL+kbbISMGUmDhXKy1QPYmLAHChe7aLz+7trqzc2ZpaWFuNqxVDEIusFAU+sOa3no0WAy1t2gfDjHYqz+VVcel50spR7O0A1u1w0N5IISAAMAFDzyVpXG31yEHikue5IWxEAWeJ/fi7v/02XuTKyv/ewNHUo+c11GNb431njiNjKL8syPTD8SxeVuZazaOTuX7j+Jd3lD1p02QhJVKEHgMhODK86WQylORUpershkFge9ZJgnl76i5o3ljQh8/29CVZkjPMQVCeJKxsk9ERA4ggZEFTQcFiBtJFhCwx7wgzrkrqzJH5dN56CVXMv3KqFpndZHpQud5liZpGsfxcJgMesVwkPR74rfOjc20gqmqbEU86lxvL1+aPPl64Pm5X3hB4ec+6YKctY4OjkhJDwEC1/TCM0M0D5PcyB5nBAgMBcOax5gIAqf+j8NnuMv/pdx+aIfxw9W13f0TW9unjx49dnymGQpJvnEYio63dy/ernvqbtPdDuH09eAr7fmn65NTtTA0xC05VWL3Dw8rIJX6f4xLKcIwNEV2/dqV2zfvHVWNpzfYz7vLa3PKj8LOoLd8/fLa3v7/KPFYo/rtf/xHJ0Uw9/f/3+5P1q89HIoLL/wX3uJTvz0NS1MhE48GT+UMo2bzubB63gs4R0RgJZyeMcaZRAgZMc4coCMwwGZQPKkRaJZzxzgZCwRADB05MO7gzjCHktxEh4BmKk3jRiO6g4umDCIREDDOsJwJOeuM0UVR6EKX5zAeDpP+IB/2skF/2O30uvv7+939Xk9865U5JQQyALDodPuzHzbmnvD9ml94ZU2k81wbY52h0RQNGEO04BxAYSfR+8qR08/9ln/pw/eu3749zLMUWUXK8+MTM9HM/X3X7/aGVplCJtomnf72ML6+uvkVffTc3JFhnHc7Y15YN/leH8JHlbeOymO1vU/53Z9tdDE5/dQF1/zhnb7E+F88NzHeiDzfV1KO2tqyaGCMIVrrqDB3rl7/zl/9zbyrtuPJt2H9nuyWDUkUYFG4j9Jiu3bqD556w/e9vU9/WfvxWvfT3p8ln8rxvLI9NqW3TjfdzMLc2OQCj0KPs4K4I0fg8JCODmCAckREMAQOnKVy4lmSa60rB9UAYEdtwyFF9mBsg+5AlJKo3FBhqfDgiJx1cDCFcQ6cc87qUS7NsjRJhsNBkSR5Guf9Ydzr9Dp7+/v7O539/V5/ECdFoZ1zIqqGQGCsscZy5Pn6rfbd92ee+s3AD4q8yHwv8/0iK4x15Us/2JchA0BHSoCIvMbpExPjY/MLn31y8cLa1kbHZHp/yxl6p6arc8Gb8tmNwXC9vTfo7p1J4yc73fd/ce2/W1urh7WzJ48eObt0f0eEnMbOP7MWvISVV/Nof6Iyu+eq/89LRX99+M+ekZ39XZMOJiYnsFoVQhwudwjIWLvfbl+6cnllY98x717afsS7TolKYzqJk6U5+9/+Vu3OSvfP3obOfmd5fXVhfCnvPZHkW37ycLU28dHE63SZ15OLf3x+72x/3tt+trW46Ddq3AtKcQhCoLK2R7AECRBSKXZBUMpzlZ8/jQQXymceyB22/AfT+VFNTnAwxCCy1pX9YzlHdUROG2tMUZg0zZI4ToaDdBhnSZwN+2m/F/d73W5nb6+92+v2hnGS5c5YIscYQwAhhCiNVxEAgVlnwaZ7V35YX3o2rM4WRZEVRRGGRmtjLRysz0bFF5YvHEoOU3Vi7IU3Xj+ydPTTCxcuX/9sr9/5LF6+IzcalXBhfGxmbOpEffHV5eS55W7icCvjf3W1g3bn4qPdaYH3NvZaew/Gw5nTx09xb5qdODpbqwfafzOJz7/a+Menaw8e3F5e3uRkGVEQhoxx5IJxckYTsDzN4iT5vZdfm1DB937xi0olf+utN77y1d/f7A0wufr84sOzS9dsZv/tL7N//2/+P+eOf+3ZwcLbwxP/fZBdOf0nxJfg/t/32tf+ordf/eQG4x8cWTry5W9886lnn1W+d7CkOdgoHUhGHP76sA6nz/WOh9U4jq750R1oR/8DIsNyZUoAbiRgaXShsywvK5pkMBz0u2m/r5Nh0ut1e93ddnt3f787GAyzzGjjHHFEhig4Q8YZjmQfhHMOyGkzUu1hKG17vX3jpwsv/1EQBllR5IXWua/zoiAiAOfs55Vpyma+fCKYp6aOH/nK5PjxEyc+uXjh9oO7wyTOtN7pD+TKWqQU5ukuwP70xMzZJ7+c5fdW13eT/r1P7hXd+Ijp5T/+n7/z7pKaP/PMCy8sHJfNqvqX52u1WiAjwYTMl+94lz8AwVB5+fQEe+EFCFv7W+z2w/jUgnmd7yftT7vZ4Mq5t/6bbw+/dEbFLfHizJeN/eLe6pXlO/+mn99qBv7D27f/+1udp/XUdbd5tVJJ/QnYuIR774Rmm+e8MMjZYNDey5P48DwdTizoYOL9+Lf+we7pccV24Ht6kKvLTq8UpyYiY4wxJi+KNE3j4TAeDOLhMO/38+EwGfT6++3d/c5uZ7/d6w3ipNCarCuVZyVjyLEM4+iPPMjnIs/yz13Lpbwy9W6/2zj+YmXiXObneZYZ3y+KwliLzpUXwMhCixyNkCej102IXjU6+fST04sLZ27cvHDxk5X11dRoclAU9j8BCc7qVr+A+RdOLz1x7NiNR6vXHj5M+umfPmNerG3/ny/sfPDxzYufXTl+8kRzZrrSaJ4+e/L5k6d7+932Zn+87a1depf2lo//4dSzr6T3dxuf/HzmJz8enp6/988m3/3w0p0N9rsvnPnW3OStwL/981/+u17twRuvvuXUwncuRu++O0BKnTXvwcqHsMYj1qJauPHvQyzGT41NtI5PTIyPt5qticmZ+cWx2Wnp+Ycb+9EBK0+kg9H+gQAZHp5VIkBgZUNR9kujcDMcDVuRUTmPNcZonRVFEifJoB8P43jQz/q9pN8d9jqd/c7u/v5et9cbDJM8t9YCAAfkjJWuRAcRHIEf2CHGoBQPLxtwzhkBkANXCvF1d7cvfz/6ylLo+0UYFEUeaN/owloDAOXfcfA20BEhjZqh8m4gwaoTrWdeffnI0rErn1789OqlnU4HAYGxQuDOYPjzixdWNlfPnDo3ceaFZ8ZO+hsXzs7d9J12IPpJfu3ards37zKGwHB8dvILL35hd3M7tidvzLx1s55BVv2j4PjJwbDbPnLrEd9I+jtX7t3A9U7OF+bHX7Pz1y9X2+0X3v/op9/76H/4myd/Mt4cu3V7bXLmWLMW1ar1eq3Sqtcb9WalXg8aLa/SCALfC/ygXPMIVoaGCPDAV3E0EhsZRT0eaZQd4eP+eDSiQeccHCxcAZgjZ11ZmuZZlsXDJO734kE/HQyyYS/p93ud9s7e3tZep93rJ1lqjCkXeIIxzjlnI0WH0dx2lA7LQMJhOEv0jwjDoGxJjbFUDnMZkqPOzQ87J15pHX0lCII8z4vC+L5X5NpYY8vSrWzqgdxolX3QRxBiKX8oobkw/WrjS7Nzcx9++P691YfaWcnRWDbM7J2VjZ3ecHi8+frC7KsnFqPGrhusTTUap/2GH1VrtZrg2O91dtt7P/7OjzKiU2+8ue1X77PWN2f/ZPPm4r/efGd+adx6jTzc6BqZyNnp6QAmh256oO3snbtmZ3hkevpMRTTmp46++dIbE81GEPqe78lS8UMIx9Ais8SJCKHUfCjfggNyWFrhHrpEsYPzeRDhUcYd5bnyYR5lX8alAyijqHVW5EWcpMlwOBz0kn4/jQf5oJ8Nur39zk67vbbb3u71sywnS4IBZ1xywRB4WZKMjmD5NzwulMtlVRlHPqqwCJH+/7vBfFyChvXqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "PILImage mode=RGB size=154x192" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "im=PILImage.create('donut.jpg')\n", + "im.thumbnail((192,192))\n", + "im" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "#|export\n", + "from fastcore.all import *\n", + "learn = load_learner('donut_model2.pkl')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "('donut', TensorBase(0), TensorBase([9.9993e-01, 6.8589e-05]))" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "learn.predict(im)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "#|export\n", + "categories = ('donut', 'scone')\n", + "\n", + "def classify_image(img):\n", + " pred,idx,probs = learn.predict(img)\n", + " return dict(zip(categories, map(float, probs)))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "{'donut': 0.9999314546585083, 'scone': 6.85889390297234e-05}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "classify_image(im)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/gradio/inputs.py:256: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n", + " warnings.warn(\n", + "/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n", + " warnings.warn(value)\n", + "/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/gradio/outputs.py:196: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n", + " warnings.warn(\n", + "/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/gradio/deprecation.py:40: UserWarning: The 'type' parameter has been deprecated. Use the Number component instead.\n", + " warnings.warn(value)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running on local URL: http://127.0.0.1:7861\n", + "Running on public URL: https://dba9753ffbaa6b77.gradio.app\n", + "\n", + "This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n" + ] + }, + { + "data": { + "text/plain": [ + "(,\n", + " 'http://127.0.0.1:7861/',\n", + " 'https://dba9753ffbaa6b77.gradio.app')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#|export\n", + "image = gr.inputs.Image(shape = (192,192))\n", + "label = gr.outputs.Label()\n", + "examples = ['donut.jpg', 'scone.jpg']\n", + "\n", + "intf = gr.Interface(fn = classify_image, inputs = image, outputs = label, examples = examples)\n", + "intf.launch(inline=False, share=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# *export*" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'notebook2script' from 'nbdev.export' (/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/nbdev/export.py)", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn [2], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m#|export\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mfastai\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mvision\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mall\u001b[39;00m \u001b[39mimport\u001b[39;00m \u001b[39m*\u001b[39m\n\u001b[1;32m 3\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mgradio\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mgr\u001b[39;00m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'fastai'" + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [27], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mnbdev\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexport\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m notebook2script\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'notebook2script' from 'nbdev.export' (/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/nbdev/export.py)" ] } ], "source": [ - "#|export\n", - "from fastai.vision.all import *\n", - "import gradio as gr" + "from nbdev.export import notebook2script" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "import nbdev\n", + "nbdev.export.nb_export('app.ipynb', 'app')" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.6 64-bit", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -169,9 +429,8 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.6" + "version": "3.10.6" }, - "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" diff --git a/app/app.py b/app/app.py new file mode 100644 index 0000000000000000000000000000000000000000..a48de7f9788a230abd4aa6421ae2dc479bb15bfb --- /dev/null +++ b/app/app.py @@ -0,0 +1,27 @@ +# AUTOGENERATED! DO NOT EDIT! File to edit: ../app.ipynb. + +# %% auto 0 +__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'classify_image'] + +# %% ../app.ipynb 1 +from fastai.vision.all import * +import gradio as gr + +# %% ../app.ipynb 7 +from fastcore.all import * +learn = load_learner('donut_model2.pkl') + +# %% ../app.ipynb 9 +categories = ('donut', 'scone') + +def classify_image(img): + pred,idx,probs = learn.predict(img) + return dict(zip(categories, map(float, probs))) + +# %% ../app.ipynb 11 +image = gr.inputs.Image(shape = (192,192)) +label = gr.outputs.Label() +examples = ['donut.jpg', 'scone.jpg'] + +intf = gr.Interface(fn = classify_image, inputs = image, outputs = label, examples = examples) +intf.launch(inline=False, share=True) diff --git a/donut.jpg b/donut.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9fdd4eab71e67a8dc050de52999768a9510c17a1 Binary files /dev/null and b/donut.jpg differ diff --git a/donut_or_not/donut/001fd41f-edc5-47ab-9fa6-158c7b31e2c8.jpg b/donut_or_not/donut/001fd41f-edc5-47ab-9fa6-158c7b31e2c8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..438387d835811bbd27294127652cce5c49aa35b8 Binary files /dev/null and b/donut_or_not/donut/001fd41f-edc5-47ab-9fa6-158c7b31e2c8.jpg differ diff --git a/donut_or_not/donut/006d4dfe-94e3-4010-bcf6-60168a49eb48.jpg b/donut_or_not/donut/006d4dfe-94e3-4010-bcf6-60168a49eb48.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4b38c5da77c1ecbba958e1d8b63a73804f16072b Binary files /dev/null and b/donut_or_not/donut/006d4dfe-94e3-4010-bcf6-60168a49eb48.jpg differ diff --git a/donut_or_not/donut/007d99c9-1788-4ac6-8397-28c28fe3c0fd.jpg b/donut_or_not/donut/007d99c9-1788-4ac6-8397-28c28fe3c0fd.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6491ee7a6ab62ccc494dedc187ba5a189df53db6 Binary files /dev/null and b/donut_or_not/donut/007d99c9-1788-4ac6-8397-28c28fe3c0fd.jpg differ diff --git a/donut_or_not/donut/066a52d5-ea0e-4342-a32b-5441632e547d.jpg b/donut_or_not/donut/066a52d5-ea0e-4342-a32b-5441632e547d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..206d03e3f051e6db0bae6ce3a61c827c24a305ee Binary files /dev/null and b/donut_or_not/donut/066a52d5-ea0e-4342-a32b-5441632e547d.jpg differ diff --git a/donut_or_not/donut/0a556ca7-6acf-4843-a006-a3c1f9ac628d.jpg b/donut_or_not/donut/0a556ca7-6acf-4843-a006-a3c1f9ac628d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..20794debb830db7c3bbbe02ebfa1981d15aa711e Binary files /dev/null and b/donut_or_not/donut/0a556ca7-6acf-4843-a006-a3c1f9ac628d.jpg differ diff --git a/donut_or_not/donut/0b7f64c5-9bef-4329-9aa0-147285bd2ac0.jpg b/donut_or_not/donut/0b7f64c5-9bef-4329-9aa0-147285bd2ac0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aa66a57c3951c0d05603d12bdb6844660ad9a14b Binary files /dev/null and b/donut_or_not/donut/0b7f64c5-9bef-4329-9aa0-147285bd2ac0.jpg differ diff --git a/donut_or_not/donut/0ce73275-1005-40c5-beca-1167695ba11e.jpg b/donut_or_not/donut/0ce73275-1005-40c5-beca-1167695ba11e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3d096378b3cba3236c23ebfd78056436482b7c91 Binary files /dev/null and b/donut_or_not/donut/0ce73275-1005-40c5-beca-1167695ba11e.jpg differ diff --git a/donut_or_not/donut/1277a5fc-7020-4c22-935d-41505da3df32.jpg b/donut_or_not/donut/1277a5fc-7020-4c22-935d-41505da3df32.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b2bdfda85322e103a3b50284cdc6623f9e5a98ac Binary files /dev/null and b/donut_or_not/donut/1277a5fc-7020-4c22-935d-41505da3df32.jpg differ diff --git a/donut_or_not/donut/14d8b5f4-2db8-4fda-ab90-b4968260d125.png b/donut_or_not/donut/14d8b5f4-2db8-4fda-ab90-b4968260d125.png new file mode 100644 index 0000000000000000000000000000000000000000..251fcc06c946b16c31f92557e305c6369b1d5d54 Binary files /dev/null and b/donut_or_not/donut/14d8b5f4-2db8-4fda-ab90-b4968260d125.png differ diff --git a/donut_or_not/donut/15251893-3189-446a-9b97-a2766bbf5ac4.jpg b/donut_or_not/donut/15251893-3189-446a-9b97-a2766bbf5ac4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6ab59fc7c7d25e03ffbdce9031d061fbe575cafb Binary files /dev/null and b/donut_or_not/donut/15251893-3189-446a-9b97-a2766bbf5ac4.jpg differ diff --git a/donut_or_not/donut/19516453-f256-412f-a036-2082ff541daa.jpe b/donut_or_not/donut/19516453-f256-412f-a036-2082ff541daa.jpe new file mode 100644 index 0000000000000000000000000000000000000000..be33103e0aec2efd80dc1901c848e6c8191bc34c Binary files /dev/null and b/donut_or_not/donut/19516453-f256-412f-a036-2082ff541daa.jpe differ diff --git a/donut_or_not/donut/195fd4f3-2383-48a6-aa39-52394ac8758a.png b/donut_or_not/donut/195fd4f3-2383-48a6-aa39-52394ac8758a.png new file mode 100644 index 0000000000000000000000000000000000000000..03b863367ed38ad67fc5376fc8139e21c6de2fd7 Binary files /dev/null and b/donut_or_not/donut/195fd4f3-2383-48a6-aa39-52394ac8758a.png differ diff --git a/donut_or_not/donut/1e7196b9-8f65-4749-bce2-8f96e2f0b922.jpg b/donut_or_not/donut/1e7196b9-8f65-4749-bce2-8f96e2f0b922.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7aed4c34914937e95e815466c5d27ce1b7a77f5c Binary files /dev/null and b/donut_or_not/donut/1e7196b9-8f65-4749-bce2-8f96e2f0b922.jpg differ diff --git a/donut_or_not/donut/1e7dc7fd-dda4-46cd-8885-e84cdb4f410f.jpeg b/donut_or_not/donut/1e7dc7fd-dda4-46cd-8885-e84cdb4f410f.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..2d381c7ca47e0dc94fa6224f57585bda6bbf6894 Binary files /dev/null and b/donut_or_not/donut/1e7dc7fd-dda4-46cd-8885-e84cdb4f410f.jpeg differ diff --git a/donut_or_not/donut/21a2b38c-9d31-45b7-b657-f7c52adffea5.jpg b/donut_or_not/donut/21a2b38c-9d31-45b7-b657-f7c52adffea5.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9057f87a6729dcea8195592b5a36698ff4d916ad Binary files /dev/null and b/donut_or_not/donut/21a2b38c-9d31-45b7-b657-f7c52adffea5.jpg differ diff --git a/donut_or_not/donut/21abef18-d65b-439c-894d-92d15d727a9e.jpg b/donut_or_not/donut/21abef18-d65b-439c-894d-92d15d727a9e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eaae40c8edcff2c8de4338d8523e58dcb479c1a2 Binary files /dev/null and b/donut_or_not/donut/21abef18-d65b-439c-894d-92d15d727a9e.jpg differ diff --git a/donut_or_not/donut/21ed50e8-60b8-4e6d-8bdd-f3152bcbdb08.jpg b/donut_or_not/donut/21ed50e8-60b8-4e6d-8bdd-f3152bcbdb08.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2a874e7ec98783b310fdee26629dfe8c73eb1406 Binary files /dev/null and b/donut_or_not/donut/21ed50e8-60b8-4e6d-8bdd-f3152bcbdb08.jpg differ diff --git a/donut_or_not/donut/22e3b6d0-0e42-42d4-9e7a-3de5ae30ca68.jpg b/donut_or_not/donut/22e3b6d0-0e42-42d4-9e7a-3de5ae30ca68.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1a95d30eb8cc57bb4dc9a479cd5236e51c3ef7a6 Binary files /dev/null and b/donut_or_not/donut/22e3b6d0-0e42-42d4-9e7a-3de5ae30ca68.jpg differ diff --git a/donut_or_not/donut/23066693-545b-444d-aa42-74228a8bc82a.jpg b/donut_or_not/donut/23066693-545b-444d-aa42-74228a8bc82a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..73d0ea1e53ce861e0571b0713b1ba8a9733c24f8 Binary files /dev/null and b/donut_or_not/donut/23066693-545b-444d-aa42-74228a8bc82a.jpg differ diff --git a/donut_or_not/donut/23fec77f-8f66-4cca-a3b3-23ed09f1ae59.jpg b/donut_or_not/donut/23fec77f-8f66-4cca-a3b3-23ed09f1ae59.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9fc5deb77762607d319470208f63045fa2576a66 Binary files /dev/null and b/donut_or_not/donut/23fec77f-8f66-4cca-a3b3-23ed09f1ae59.jpg differ diff --git a/donut_or_not/donut/240acee0-a1e2-4083-a31b-007d45070529.jpg b/donut_or_not/donut/240acee0-a1e2-4083-a31b-007d45070529.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bbb787eb7791e5c56e94ef85c6204e7374a5c6e7 Binary files /dev/null and b/donut_or_not/donut/240acee0-a1e2-4083-a31b-007d45070529.jpg differ diff --git a/donut_or_not/donut/2833eaf0-d61a-4fa2-bac4-5b62131a875b.jpg b/donut_or_not/donut/2833eaf0-d61a-4fa2-bac4-5b62131a875b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fe408f791ba8b1a5c8045d86b061da2275b91eb2 Binary files /dev/null and b/donut_or_not/donut/2833eaf0-d61a-4fa2-bac4-5b62131a875b.jpg differ diff --git a/donut_or_not/donut/2852dd94-af34-4c02-8848-9fbc87012aba.jpg b/donut_or_not/donut/2852dd94-af34-4c02-8848-9fbc87012aba.jpg new file mode 100644 index 0000000000000000000000000000000000000000..57d7f7126792a6fbb8292d734785e854bddd1a98 Binary files /dev/null and b/donut_or_not/donut/2852dd94-af34-4c02-8848-9fbc87012aba.jpg differ diff --git a/donut_or_not/donut/29db5117-e8d3-4430-9082-5fb56e3ddf69.png b/donut_or_not/donut/29db5117-e8d3-4430-9082-5fb56e3ddf69.png new file mode 100644 index 0000000000000000000000000000000000000000..3ddb05639956a1a26c4a62b4a93e18466e0ab4ec Binary files /dev/null and b/donut_or_not/donut/29db5117-e8d3-4430-9082-5fb56e3ddf69.png differ diff --git a/donut_or_not/donut/2d81cc31-116f-4690-a50b-04243d381e38.jpg b/donut_or_not/donut/2d81cc31-116f-4690-a50b-04243d381e38.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1640ca675110bdfa6566b4e9e37c2a33c3d2eafb Binary files /dev/null and b/donut_or_not/donut/2d81cc31-116f-4690-a50b-04243d381e38.jpg differ diff --git a/donut_or_not/donut/2e225fa8-3d07-4e01-b806-a4a3eb64cb8d.jpg b/donut_or_not/donut/2e225fa8-3d07-4e01-b806-a4a3eb64cb8d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..53cb58b1ee7a19ff28f828f113f846360acc9c35 Binary files /dev/null and b/donut_or_not/donut/2e225fa8-3d07-4e01-b806-a4a3eb64cb8d.jpg differ diff --git a/donut_or_not/donut/32be66a9-c1f7-400f-9184-45ab6f22dc33.jpg b/donut_or_not/donut/32be66a9-c1f7-400f-9184-45ab6f22dc33.jpg new file mode 100644 index 0000000000000000000000000000000000000000..40f21bd8c03978b15560de0fc768ad9d009b1b60 Binary files /dev/null and b/donut_or_not/donut/32be66a9-c1f7-400f-9184-45ab6f22dc33.jpg differ diff --git a/donut_or_not/donut/34ac83cd-fa95-4344-acd0-1e8036de29a4.jpg b/donut_or_not/donut/34ac83cd-fa95-4344-acd0-1e8036de29a4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3d3523c42821274b70f33f6d90bfd5684f79f703 Binary files /dev/null and b/donut_or_not/donut/34ac83cd-fa95-4344-acd0-1e8036de29a4.jpg differ diff --git a/donut_or_not/donut/39265e0b-b9f4-4286-a2bd-b0b53d04c7b7.jpg b/donut_or_not/donut/39265e0b-b9f4-4286-a2bd-b0b53d04c7b7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7746572afece66e4609ad1f443a4c6fda32cd1bc Binary files /dev/null and b/donut_or_not/donut/39265e0b-b9f4-4286-a2bd-b0b53d04c7b7.jpg differ diff --git a/donut_or_not/donut/3acc1a3c-4acd-447f-9b1f-7cd261650d95.jpg b/donut_or_not/donut/3acc1a3c-4acd-447f-9b1f-7cd261650d95.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8dc9c6f79312112ca21d36b4151b9d1d207d6cc4 Binary files /dev/null and b/donut_or_not/donut/3acc1a3c-4acd-447f-9b1f-7cd261650d95.jpg differ diff --git a/donut_or_not/donut/3d1083cb-f74e-4d13-a1d6-b686dcd692ea.jpg b/donut_or_not/donut/3d1083cb-f74e-4d13-a1d6-b686dcd692ea.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a3ffefea7bcf839c1d66058fc87e88a0434f3838 Binary files /dev/null and b/donut_or_not/donut/3d1083cb-f74e-4d13-a1d6-b686dcd692ea.jpg differ diff --git a/donut_or_not/donut/3d26a78e-dcb1-401b-9f7f-0e74fcedae3c.png b/donut_or_not/donut/3d26a78e-dcb1-401b-9f7f-0e74fcedae3c.png new file mode 100644 index 0000000000000000000000000000000000000000..ebe747713c33dadbf17b8ba906a31af2f2344201 Binary files /dev/null and b/donut_or_not/donut/3d26a78e-dcb1-401b-9f7f-0e74fcedae3c.png differ diff --git a/donut_or_not/donut/4281721f-7a24-4d92-ae41-cc1949efafd3.jpg b/donut_or_not/donut/4281721f-7a24-4d92-ae41-cc1949efafd3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c7ab67c23d777e3eb4bba2c0198a842fef771d8f Binary files /dev/null and b/donut_or_not/donut/4281721f-7a24-4d92-ae41-cc1949efafd3.jpg differ diff --git a/donut_or_not/donut/44676691-b3f2-47b2-8569-60b60410e902.jpg b/donut_or_not/donut/44676691-b3f2-47b2-8569-60b60410e902.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e8829e185d4927312096b7eab631eb43fe78efe Binary files /dev/null and b/donut_or_not/donut/44676691-b3f2-47b2-8569-60b60410e902.jpg differ diff --git a/donut_or_not/donut/4a27d3c0-0f51-491f-abfb-2b3ab09c304f.jpg b/donut_or_not/donut/4a27d3c0-0f51-491f-abfb-2b3ab09c304f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c5ad5ca8423767ca0dbbe2ab25e067923900fdf9 Binary files /dev/null and b/donut_or_not/donut/4a27d3c0-0f51-491f-abfb-2b3ab09c304f.jpg differ diff --git a/donut_or_not/donut/4a56b69a-cd52-46e8-a25c-c2f8d39a93fa.jpg b/donut_or_not/donut/4a56b69a-cd52-46e8-a25c-c2f8d39a93fa.jpg new file mode 100644 index 0000000000000000000000000000000000000000..288ec5400bbe97f9880e7cda1e026ebdd0db0bce Binary files /dev/null and b/donut_or_not/donut/4a56b69a-cd52-46e8-a25c-c2f8d39a93fa.jpg differ diff --git a/donut_or_not/donut/4cc60a06-dbeb-4098-8d58-d2fe8acd1cf9.jpg b/donut_or_not/donut/4cc60a06-dbeb-4098-8d58-d2fe8acd1cf9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2035e3567a3e4a7a0e7c17baa4cf2e4f58a6d8fb Binary files /dev/null and b/donut_or_not/donut/4cc60a06-dbeb-4098-8d58-d2fe8acd1cf9.jpg differ diff --git a/donut_or_not/donut/4d47eb52-a96a-4a65-a1be-e320bd30347f.jpg b/donut_or_not/donut/4d47eb52-a96a-4a65-a1be-e320bd30347f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..341b231f84e7fb96808a7952050b17c0bf863411 Binary files /dev/null and b/donut_or_not/donut/4d47eb52-a96a-4a65-a1be-e320bd30347f.jpg differ diff --git a/donut_or_not/donut/51dc46b0-fc25-436e-a0f1-546ebfa42cdc.jpg b/donut_or_not/donut/51dc46b0-fc25-436e-a0f1-546ebfa42cdc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f01170e763eb1fb3508c116e1972302c2c8e2808 Binary files /dev/null and b/donut_or_not/donut/51dc46b0-fc25-436e-a0f1-546ebfa42cdc.jpg differ diff --git a/donut_or_not/donut/52c7b0ef-3d77-45d2-abda-24d20d2f3232.jpg b/donut_or_not/donut/52c7b0ef-3d77-45d2-abda-24d20d2f3232.jpg new file mode 100644 index 0000000000000000000000000000000000000000..43926d615c3b484cad0df91c0b0b84b9500a4664 Binary files /dev/null and b/donut_or_not/donut/52c7b0ef-3d77-45d2-abda-24d20d2f3232.jpg differ diff --git a/donut_or_not/donut/53818195-e221-4564-94e6-0c04e8777f7f.jpg b/donut_or_not/donut/53818195-e221-4564-94e6-0c04e8777f7f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fd338be9a94ca721219b4e9b9403ec86560be503 Binary files /dev/null and b/donut_or_not/donut/53818195-e221-4564-94e6-0c04e8777f7f.jpg differ diff --git a/donut_or_not/donut/54271077-e678-4cfd-b242-b12c1a74224a.jpg b/donut_or_not/donut/54271077-e678-4cfd-b242-b12c1a74224a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ce254a70a97dddd9aacdd58fc143cd784e632527 Binary files /dev/null and b/donut_or_not/donut/54271077-e678-4cfd-b242-b12c1a74224a.jpg differ diff --git a/donut_or_not/donut/58944dec-ca93-4ac5-8943-dd4097d955c0.jpg b/donut_or_not/donut/58944dec-ca93-4ac5-8943-dd4097d955c0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..da57232bccc387f2bcb299ca44ad2a9d6a55495b Binary files /dev/null and b/donut_or_not/donut/58944dec-ca93-4ac5-8943-dd4097d955c0.jpg differ diff --git a/donut_or_not/donut/5d114419-e170-4018-8640-36ea0027cd05.jpg b/donut_or_not/donut/5d114419-e170-4018-8640-36ea0027cd05.jpg new file mode 100644 index 0000000000000000000000000000000000000000..948d46f2343053f8c97532201d9af42bc226ae63 Binary files /dev/null and b/donut_or_not/donut/5d114419-e170-4018-8640-36ea0027cd05.jpg differ diff --git a/donut_or_not/donut/60a7652e-6ec0-4f7f-8ef2-8c57ce89665d.jpg b/donut_or_not/donut/60a7652e-6ec0-4f7f-8ef2-8c57ce89665d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..11859336537600841faac66da00a6fedbc40cf69 Binary files /dev/null and b/donut_or_not/donut/60a7652e-6ec0-4f7f-8ef2-8c57ce89665d.jpg differ diff --git a/donut_or_not/donut/6226fb76-f460-417d-819b-049f57200bda.jpg b/donut_or_not/donut/6226fb76-f460-417d-819b-049f57200bda.jpg new file mode 100644 index 0000000000000000000000000000000000000000..395ce712deafb52dba94b310bf321ffd15f4fe9b Binary files /dev/null and b/donut_or_not/donut/6226fb76-f460-417d-819b-049f57200bda.jpg differ diff --git a/donut_or_not/donut/65480a94-f3dd-480b-8f53-ba474ed67f2a.jpg b/donut_or_not/donut/65480a94-f3dd-480b-8f53-ba474ed67f2a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3e1289bfd7fac5c927cabc336373f5c3f866485f Binary files /dev/null and b/donut_or_not/donut/65480a94-f3dd-480b-8f53-ba474ed67f2a.jpg differ diff --git a/donut_or_not/donut/66427c32-e0dd-4365-9d3c-cabda79fc69d.jpg b/donut_or_not/donut/66427c32-e0dd-4365-9d3c-cabda79fc69d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f004ce4224a0c8374405ac90e36c31806884384f Binary files /dev/null and b/donut_or_not/donut/66427c32-e0dd-4365-9d3c-cabda79fc69d.jpg differ diff --git a/donut_or_not/donut/66554f05-c819-46b8-aa17-cf713e66f9c6.jpg b/donut_or_not/donut/66554f05-c819-46b8-aa17-cf713e66f9c6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3d3523c42821274b70f33f6d90bfd5684f79f703 Binary files /dev/null and b/donut_or_not/donut/66554f05-c819-46b8-aa17-cf713e66f9c6.jpg differ diff --git a/donut_or_not/donut/67a334cb-f82b-47e4-af0a-304838f31c6d.jpg b/donut_or_not/donut/67a334cb-f82b-47e4-af0a-304838f31c6d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8b7f1d2ea62d3b2d076cb487bb0d2f3f84c80278 Binary files /dev/null and b/donut_or_not/donut/67a334cb-f82b-47e4-af0a-304838f31c6d.jpg differ diff --git a/donut_or_not/donut/6bf8cfc8-4037-44f0-88b2-75d421019935.jpg b/donut_or_not/donut/6bf8cfc8-4037-44f0-88b2-75d421019935.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3f9b30b82cc5ca37ba65b35cdfbe0a3ff28d0b4f Binary files /dev/null and b/donut_or_not/donut/6bf8cfc8-4037-44f0-88b2-75d421019935.jpg differ diff --git a/donut_or_not/donut/6c96d3bb-f790-4add-8794-3e2ba7ef2efc.jpg b/donut_or_not/donut/6c96d3bb-f790-4add-8794-3e2ba7ef2efc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2995cc1c87b29639c2fa3357d73165ba0c4024ad Binary files /dev/null and b/donut_or_not/donut/6c96d3bb-f790-4add-8794-3e2ba7ef2efc.jpg differ diff --git a/donut_or_not/donut/744ce3ce-e4ad-4d00-a954-6fd19772bb87.jpg b/donut_or_not/donut/744ce3ce-e4ad-4d00-a954-6fd19772bb87.jpg new file mode 100644 index 0000000000000000000000000000000000000000..58a00a744894fe5c9287c9126acdd43dfe7700e6 Binary files /dev/null and b/donut_or_not/donut/744ce3ce-e4ad-4d00-a954-6fd19772bb87.jpg differ diff --git a/donut_or_not/donut/758bf41b-42e8-4e5b-9a34-1582c15bfa4b.jpg b/donut_or_not/donut/758bf41b-42e8-4e5b-9a34-1582c15bfa4b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..580183b7be38211fa20b03c63932b16a6b79b3ed Binary files /dev/null and b/donut_or_not/donut/758bf41b-42e8-4e5b-9a34-1582c15bfa4b.jpg differ diff --git a/donut_or_not/donut/795f9338-8368-4567-bd2a-85b3440a0188.png b/donut_or_not/donut/795f9338-8368-4567-bd2a-85b3440a0188.png new file mode 100644 index 0000000000000000000000000000000000000000..55430f9a5f47d78f7c820fb3ad4add926a724578 Binary files /dev/null and b/donut_or_not/donut/795f9338-8368-4567-bd2a-85b3440a0188.png differ diff --git a/donut_or_not/donut/7abda76a-cfef-45fe-97d1-e93e9270362b.jpg b/donut_or_not/donut/7abda76a-cfef-45fe-97d1-e93e9270362b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..817f45c4f54893654848d61c9460d141f3d363e4 Binary files /dev/null and b/donut_or_not/donut/7abda76a-cfef-45fe-97d1-e93e9270362b.jpg differ diff --git a/donut_or_not/donut/7b91b72d-044a-4cad-b185-41c48be3cf75.jpg b/donut_or_not/donut/7b91b72d-044a-4cad-b185-41c48be3cf75.jpg new file mode 100644 index 0000000000000000000000000000000000000000..748aed5dd01bf9e36246d8f629a4f90f2d54660e Binary files /dev/null and b/donut_or_not/donut/7b91b72d-044a-4cad-b185-41c48be3cf75.jpg differ diff --git a/donut_or_not/donut/7ba6e49a-661f-4335-a7a3-6bf3227d098e.jpg b/donut_or_not/donut/7ba6e49a-661f-4335-a7a3-6bf3227d098e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..69db14ab037b409a91b229e434b06eb0af4cf1a7 Binary files /dev/null and b/donut_or_not/donut/7ba6e49a-661f-4335-a7a3-6bf3227d098e.jpg differ diff --git a/donut_or_not/donut/7de9ebbe-c7bf-46e4-86a3-74bb2ced348c.jpg b/donut_or_not/donut/7de9ebbe-c7bf-46e4-86a3-74bb2ced348c.jpg new file mode 100644 index 0000000000000000000000000000000000000000..681ec38570f67ba0f55c6ee62e0e147723296359 Binary files /dev/null and b/donut_or_not/donut/7de9ebbe-c7bf-46e4-86a3-74bb2ced348c.jpg differ diff --git a/donut_or_not/donut/7fe3b791-e62d-41e0-98c5-93cfe4b40524.jpg b/donut_or_not/donut/7fe3b791-e62d-41e0-98c5-93cfe4b40524.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b3ab7590df154c061af1e03f507a8b1fb3276b2f Binary files /dev/null and b/donut_or_not/donut/7fe3b791-e62d-41e0-98c5-93cfe4b40524.jpg differ diff --git a/donut_or_not/donut/839b8195-303e-4dff-b281-73d87f59ce5d.jpg b/donut_or_not/donut/839b8195-303e-4dff-b281-73d87f59ce5d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..84a8753c035cb33a26c239edf097f476f64c4d23 Binary files /dev/null and b/donut_or_not/donut/839b8195-303e-4dff-b281-73d87f59ce5d.jpg differ diff --git a/donut_or_not/donut/88a2395f-53f5-409d-84f9-e08bf85426da.png b/donut_or_not/donut/88a2395f-53f5-409d-84f9-e08bf85426da.png new file mode 100644 index 0000000000000000000000000000000000000000..89bfc3e63cb323c63e2701fb7d239f7eb8890e3b Binary files /dev/null and b/donut_or_not/donut/88a2395f-53f5-409d-84f9-e08bf85426da.png differ diff --git a/donut_or_not/donut/88bd0dad-bcb6-4c49-b169-9b2496dd53e7.jpg b/donut_or_not/donut/88bd0dad-bcb6-4c49-b169-9b2496dd53e7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e8b4b7ad14c7024f47e244ca2b5c9a0f9526bcee Binary files /dev/null and b/donut_or_not/donut/88bd0dad-bcb6-4c49-b169-9b2496dd53e7.jpg differ diff --git a/donut_or_not/donut/892e5701-0726-4757-8797-97860c5941fc.jpg b/donut_or_not/donut/892e5701-0726-4757-8797-97860c5941fc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..61a90f9206069ac50729142a86e79ad00c30dd4e Binary files /dev/null and b/donut_or_not/donut/892e5701-0726-4757-8797-97860c5941fc.jpg differ diff --git a/donut_or_not/donut/8a44ede1-e02f-4c95-8138-9c54ee269a54.png b/donut_or_not/donut/8a44ede1-e02f-4c95-8138-9c54ee269a54.png new file mode 100644 index 0000000000000000000000000000000000000000..f197075e6be886b42364ece2b3ff9fe46ddae14b Binary files /dev/null and b/donut_or_not/donut/8a44ede1-e02f-4c95-8138-9c54ee269a54.png differ diff --git a/donut_or_not/donut/8a67672c-ca2d-4714-8994-d74d09e3b17a.jpg b/donut_or_not/donut/8a67672c-ca2d-4714-8994-d74d09e3b17a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6ab59fc7c7d25e03ffbdce9031d061fbe575cafb Binary files /dev/null and b/donut_or_not/donut/8a67672c-ca2d-4714-8994-d74d09e3b17a.jpg differ diff --git a/donut_or_not/donut/8b01bfd0-81d4-4b84-ac9d-eedaa280edb1.jpg b/donut_or_not/donut/8b01bfd0-81d4-4b84-ac9d-eedaa280edb1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ef68eaf7d36c973935ae43f525547673d6d6c498 Binary files /dev/null and b/donut_or_not/donut/8b01bfd0-81d4-4b84-ac9d-eedaa280edb1.jpg differ diff --git a/donut_or_not/donut/8b8e7bb1-ed43-491f-afb7-51922396334e.jpg b/donut_or_not/donut/8b8e7bb1-ed43-491f-afb7-51922396334e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f7b8fcd11ffbfa9cb32db50a11f9ee3132b2c3db Binary files /dev/null and b/donut_or_not/donut/8b8e7bb1-ed43-491f-afb7-51922396334e.jpg differ diff --git a/donut_or_not/donut/8bfda645-7cad-489d-ac38-0a4f40a84436.jpg b/donut_or_not/donut/8bfda645-7cad-489d-ac38-0a4f40a84436.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6c8cb30b18f0e9b52d010be50a0c0fc9c9b08bbe Binary files /dev/null and b/donut_or_not/donut/8bfda645-7cad-489d-ac38-0a4f40a84436.jpg differ diff --git a/donut_or_not/donut/9013270f-528d-4fa6-bd14-7237a3b88811.jpg b/donut_or_not/donut/9013270f-528d-4fa6-bd14-7237a3b88811.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f22d73926a8245e2656207e733264082c7968fb6 Binary files /dev/null and b/donut_or_not/donut/9013270f-528d-4fa6-bd14-7237a3b88811.jpg differ diff --git a/donut_or_not/donut/94a58083-bcfb-48a1-b16e-9c07c021c13b.jpg b/donut_or_not/donut/94a58083-bcfb-48a1-b16e-9c07c021c13b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..39909b402a9c41fce3a307b3659f66d73a5ad8b6 Binary files /dev/null and b/donut_or_not/donut/94a58083-bcfb-48a1-b16e-9c07c021c13b.jpg differ diff --git a/donut_or_not/donut/96dd3c49-b16f-43d4-9c08-345ee7439fbf.jpg b/donut_or_not/donut/96dd3c49-b16f-43d4-9c08-345ee7439fbf.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3420e695810c9a2ec9622bc1253f2bf93c769eaa Binary files /dev/null and b/donut_or_not/donut/96dd3c49-b16f-43d4-9c08-345ee7439fbf.jpg differ diff --git a/donut_or_not/donut/9b080243-23bf-4286-b0ba-a89b63627e88.jpe b/donut_or_not/donut/9b080243-23bf-4286-b0ba-a89b63627e88.jpe new file mode 100644 index 0000000000000000000000000000000000000000..be33103e0aec2efd80dc1901c848e6c8191bc34c Binary files /dev/null and b/donut_or_not/donut/9b080243-23bf-4286-b0ba-a89b63627e88.jpe differ diff --git a/donut_or_not/donut/9b7fb2fc-1f01-4b7a-b31b-0bdf3ff714f0.jpeg b/donut_or_not/donut/9b7fb2fc-1f01-4b7a-b31b-0bdf3ff714f0.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..83c9655cde7537bdaef0419adebf01025f8e0afd Binary files /dev/null and b/donut_or_not/donut/9b7fb2fc-1f01-4b7a-b31b-0bdf3ff714f0.jpeg differ diff --git a/donut_or_not/donut/9d0f2d5c-313e-416c-8ed6-6b8b4b915125.jpg b/donut_or_not/donut/9d0f2d5c-313e-416c-8ed6-6b8b4b915125.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3f9b30b82cc5ca37ba65b35cdfbe0a3ff28d0b4f Binary files /dev/null and b/donut_or_not/donut/9d0f2d5c-313e-416c-8ed6-6b8b4b915125.jpg differ diff --git a/donut_or_not/donut/9ed60826-4fa9-4ac6-a0e9-9e6f4e3ae008.jpeg b/donut_or_not/donut/9ed60826-4fa9-4ac6-a0e9-9e6f4e3ae008.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..9f92ca5bf25cf5cbc253b6b4b21630ab20587aeb Binary files /dev/null and b/donut_or_not/donut/9ed60826-4fa9-4ac6-a0e9-9e6f4e3ae008.jpeg differ diff --git a/donut_or_not/donut/9f2c639a-bba5-4d66-9f58-ce8288ef412d.png b/donut_or_not/donut/9f2c639a-bba5-4d66-9f58-ce8288ef412d.png new file mode 100644 index 0000000000000000000000000000000000000000..2ff658318328407b1816ac85cdaf1afc13848323 Binary files /dev/null and b/donut_or_not/donut/9f2c639a-bba5-4d66-9f58-ce8288ef412d.png differ diff --git a/donut_or_not/donut/a7df64da-a2bc-46c1-90af-7cfd7fb11f69.jpg b/donut_or_not/donut/a7df64da-a2bc-46c1-90af-7cfd7fb11f69.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5b9dffe48bd9e29fb61de79da0a8f5137f008282 Binary files /dev/null and b/donut_or_not/donut/a7df64da-a2bc-46c1-90af-7cfd7fb11f69.jpg differ diff --git a/donut_or_not/donut/a9e01a66-0dbb-4960-a75e-77df67d9e841.jpg b/donut_or_not/donut/a9e01a66-0dbb-4960-a75e-77df67d9e841.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c5ad5ca8423767ca0dbbe2ab25e067923900fdf9 Binary files /dev/null and b/donut_or_not/donut/a9e01a66-0dbb-4960-a75e-77df67d9e841.jpg differ diff --git a/donut_or_not/donut/abeb1062-fd73-49b0-b718-52a07914fee2.jpg b/donut_or_not/donut/abeb1062-fd73-49b0-b718-52a07914fee2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a8463fbc032eba5aeeace92b72bedb030c51dd3b Binary files /dev/null and b/donut_or_not/donut/abeb1062-fd73-49b0-b718-52a07914fee2.jpg differ diff --git a/donut_or_not/donut/b399708d-f43e-45f0-aa97-7b79751af667.jpg b/donut_or_not/donut/b399708d-f43e-45f0-aa97-7b79751af667.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a60674bc7ad2241ce357d683085ddf772334ec52 Binary files /dev/null and b/donut_or_not/donut/b399708d-f43e-45f0-aa97-7b79751af667.jpg differ diff --git a/donut_or_not/donut/b509ff99-824e-4de6-a4a3-6491a4934033.jpg b/donut_or_not/donut/b509ff99-824e-4de6-a4a3-6491a4934033.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0aa5f9ac51877d7182784cac549ad7b31e3627c6 Binary files /dev/null and b/donut_or_not/donut/b509ff99-824e-4de6-a4a3-6491a4934033.jpg differ diff --git a/donut_or_not/donut/b6429177-7a1f-40be-b873-46d46f01e092.jpg b/donut_or_not/donut/b6429177-7a1f-40be-b873-46d46f01e092.jpg new file mode 100644 index 0000000000000000000000000000000000000000..27f0fa8ba36b75753e32ceeb3f0720f07bcbadb4 Binary files /dev/null and b/donut_or_not/donut/b6429177-7a1f-40be-b873-46d46f01e092.jpg differ diff --git a/donut_or_not/donut/b6c37266-704a-44fd-9e3b-056a252fb87b.jpg b/donut_or_not/donut/b6c37266-704a-44fd-9e3b-056a252fb87b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..061a5efd6f6363ae2c1dd4d88742b0cc1b853881 Binary files /dev/null and b/donut_or_not/donut/b6c37266-704a-44fd-9e3b-056a252fb87b.jpg differ diff --git a/donut_or_not/donut/b6d31bc1-734d-438d-8ead-eedd9dc3be57.jpg b/donut_or_not/donut/b6d31bc1-734d-438d-8ead-eedd9dc3be57.jpg new file mode 100644 index 0000000000000000000000000000000000000000..42e7e525d3ce74d282a762b5ab0073021d8b5548 Binary files /dev/null and b/donut_or_not/donut/b6d31bc1-734d-438d-8ead-eedd9dc3be57.jpg differ diff --git a/donut_or_not/donut/b857c52f-6eaf-401f-bd33-bbd438c8b287.jpg b/donut_or_not/donut/b857c52f-6eaf-401f-bd33-bbd438c8b287.jpg new file mode 100644 index 0000000000000000000000000000000000000000..49d3ec483b585859e3c092b0fffe3267daa71e72 Binary files /dev/null and b/donut_or_not/donut/b857c52f-6eaf-401f-bd33-bbd438c8b287.jpg differ diff --git a/donut_or_not/donut/b9e8bd9a-7ea4-4171-84b8-64713f17ac7d.jpg b/donut_or_not/donut/b9e8bd9a-7ea4-4171-84b8-64713f17ac7d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b6866f3f885b5473caf10452d44678d1610aac44 Binary files /dev/null and b/donut_or_not/donut/b9e8bd9a-7ea4-4171-84b8-64713f17ac7d.jpg differ diff --git a/donut_or_not/donut/ba1cbf9d-e40c-4241-b618-72493e0507ac.jpg b/donut_or_not/donut/ba1cbf9d-e40c-4241-b618-72493e0507ac.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c5e18a006a9e89b80c51217fa45b98c0d763636 Binary files /dev/null and b/donut_or_not/donut/ba1cbf9d-e40c-4241-b618-72493e0507ac.jpg differ diff --git a/donut_or_not/donut/ba9eb82c-e11b-4b63-9775-af3f6d6f896c.jpg b/donut_or_not/donut/ba9eb82c-e11b-4b63-9775-af3f6d6f896c.jpg new file mode 100644 index 0000000000000000000000000000000000000000..da57232bccc387f2bcb299ca44ad2a9d6a55495b Binary files /dev/null and b/donut_or_not/donut/ba9eb82c-e11b-4b63-9775-af3f6d6f896c.jpg differ diff --git a/donut_or_not/donut/baa10674-e53f-484c-8c19-8854075c51b7.jpg b/donut_or_not/donut/baa10674-e53f-484c-8c19-8854075c51b7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..85aa5aa679fe8d83de803fdacb10051d6c1f3c3d Binary files /dev/null and b/donut_or_not/donut/baa10674-e53f-484c-8c19-8854075c51b7.jpg differ diff --git a/donut_or_not/donut/bf9be78a-b551-4afa-bc88-323020c25d6b.jpg b/donut_or_not/donut/bf9be78a-b551-4afa-bc88-323020c25d6b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f65038a74b890357802d58bb6b3c8374d0a90c4a Binary files /dev/null and b/donut_or_not/donut/bf9be78a-b551-4afa-bc88-323020c25d6b.jpg differ diff --git a/donut_or_not/donut/c5466b48-737d-4bac-bd33-4fcb3e2a907f.jpg b/donut_or_not/donut/c5466b48-737d-4bac-bd33-4fcb3e2a907f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e7a91f14994ec5ca1a511109ff463df6ec88b2f Binary files /dev/null and b/donut_or_not/donut/c5466b48-737d-4bac-bd33-4fcb3e2a907f.jpg differ diff --git a/donut_or_not/donut/c796374a-ca3c-4746-81f4-76e4879a9bb3.jpg b/donut_or_not/donut/c796374a-ca3c-4746-81f4-76e4879a9bb3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4fe84018a4442d7505446f4bb5dabae075db1fd6 Binary files /dev/null and b/donut_or_not/donut/c796374a-ca3c-4746-81f4-76e4879a9bb3.jpg differ diff --git a/donut_or_not/donut/ca32fefd-2335-4fb6-9172-d6d92aeddd35.jpg b/donut_or_not/donut/ca32fefd-2335-4fb6-9172-d6d92aeddd35.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3eed4d3fd520f223dbd8e6c857f3543aa25a83c0 Binary files /dev/null and b/donut_or_not/donut/ca32fefd-2335-4fb6-9172-d6d92aeddd35.jpg differ diff --git a/donut_or_not/donut/cd63989b-c943-4d99-9c77-5ff85b74ea79.png b/donut_or_not/donut/cd63989b-c943-4d99-9c77-5ff85b74ea79.png new file mode 100644 index 0000000000000000000000000000000000000000..588f1ff3a9f985eb67a03a5720b5dbdd116af967 Binary files /dev/null and b/donut_or_not/donut/cd63989b-c943-4d99-9c77-5ff85b74ea79.png differ diff --git a/donut_or_not/donut/ce7bb171-90d3-4628-8b49-aeb57ef9d6b8.jpg b/donut_or_not/donut/ce7bb171-90d3-4628-8b49-aeb57ef9d6b8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..25c0ec0de7a504df339bc97976759272eafe4dfc Binary files /dev/null and b/donut_or_not/donut/ce7bb171-90d3-4628-8b49-aeb57ef9d6b8.jpg differ diff --git a/donut_or_not/donut/d4a6583a-72d9-49c1-9630-bf708a5cf4c8.jpg b/donut_or_not/donut/d4a6583a-72d9-49c1-9630-bf708a5cf4c8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5204c4486bc9663bd89471809d1e42f8050a9de8 Binary files /dev/null and b/donut_or_not/donut/d4a6583a-72d9-49c1-9630-bf708a5cf4c8.jpg differ diff --git a/donut_or_not/donut/d52bb2b9-0d80-4b1a-9c35-f3f49fc76ad9.jpeg b/donut_or_not/donut/d52bb2b9-0d80-4b1a-9c35-f3f49fc76ad9.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..66715778f200417b73ce8ba2973bf771dc35936c Binary files /dev/null and b/donut_or_not/donut/d52bb2b9-0d80-4b1a-9c35-f3f49fc76ad9.jpeg differ diff --git a/donut_or_not/donut/d6b904c3-2220-4a5d-8a91-54cd24eabb98.jpg b/donut_or_not/donut/d6b904c3-2220-4a5d-8a91-54cd24eabb98.jpg new file mode 100644 index 0000000000000000000000000000000000000000..25bd7de3a9200611fa7fa34c856113b5155f03bb Binary files /dev/null and b/donut_or_not/donut/d6b904c3-2220-4a5d-8a91-54cd24eabb98.jpg differ diff --git a/donut_or_not/donut/d7b42054-ff1f-46ee-9796-df8803edb59a.jpg b/donut_or_not/donut/d7b42054-ff1f-46ee-9796-df8803edb59a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..12a56ebf75ec5b1ebbc7468c81324a3d95492834 Binary files /dev/null and b/donut_or_not/donut/d7b42054-ff1f-46ee-9796-df8803edb59a.jpg differ diff --git a/donut_or_not/donut/d7ccb1a2-f86c-4e63-8a28-2a3f145363bd.jpg b/donut_or_not/donut/d7ccb1a2-f86c-4e63-8a28-2a3f145363bd.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f65038a74b890357802d58bb6b3c8374d0a90c4a Binary files /dev/null and b/donut_or_not/donut/d7ccb1a2-f86c-4e63-8a28-2a3f145363bd.jpg differ diff --git a/donut_or_not/donut/db52f30e-0b5b-49c9-8e51-96d13b2ab9bb.png b/donut_or_not/donut/db52f30e-0b5b-49c9-8e51-96d13b2ab9bb.png new file mode 100644 index 0000000000000000000000000000000000000000..f197075e6be886b42364ece2b3ff9fe46ddae14b Binary files /dev/null and b/donut_or_not/donut/db52f30e-0b5b-49c9-8e51-96d13b2ab9bb.png differ diff --git a/donut_or_not/donut/db9319db-2d94-444d-80c5-7489c8b7aad5.jpg b/donut_or_not/donut/db9319db-2d94-444d-80c5-7489c8b7aad5.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d3a258055956d20c437ea3649885fcda88419d6a Binary files /dev/null and b/donut_or_not/donut/db9319db-2d94-444d-80c5-7489c8b7aad5.jpg differ diff --git a/donut_or_not/donut/dbfb1a65-97db-441f-b8d5-b2d9846556c1.jpg b/donut_or_not/donut/dbfb1a65-97db-441f-b8d5-b2d9846556c1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bf45f532bb29f7f9a48344a8bf13d3eb1b2f1f8c Binary files /dev/null and b/donut_or_not/donut/dbfb1a65-97db-441f-b8d5-b2d9846556c1.jpg differ diff --git a/donut_or_not/donut/dce5e0fc-2095-458e-98a1-c51c10fea039.png b/donut_or_not/donut/dce5e0fc-2095-458e-98a1-c51c10fea039.png new file mode 100644 index 0000000000000000000000000000000000000000..ebe747713c33dadbf17b8ba906a31af2f2344201 Binary files /dev/null and b/donut_or_not/donut/dce5e0fc-2095-458e-98a1-c51c10fea039.png differ diff --git a/donut_or_not/donut/e14c4dbc-8164-4152-b237-4662ace9afdc.jpg b/donut_or_not/donut/e14c4dbc-8164-4152-b237-4662ace9afdc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d883d2d4a84d88b4766a68f900b7e1dc3ce7a00e Binary files /dev/null and b/donut_or_not/donut/e14c4dbc-8164-4152-b237-4662ace9afdc.jpg differ diff --git a/donut_or_not/donut/f300fdbe-c743-4b37-a2d3-c4eeb969ca04.jpg b/donut_or_not/donut/f300fdbe-c743-4b37-a2d3-c4eeb969ca04.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2dd552657b3d0031d19b4831a0030ebcdb894644 Binary files /dev/null and b/donut_or_not/donut/f300fdbe-c743-4b37-a2d3-c4eeb969ca04.jpg differ diff --git a/donut_or_not/donut/fa9ad996-0fad-4610-82b0-830d9b3bc05e.jpg b/donut_or_not/donut/fa9ad996-0fad-4610-82b0-830d9b3bc05e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..deb72617c8d6327f8c5f153f22c0c3ee38bc0ce8 Binary files /dev/null and b/donut_or_not/donut/fa9ad996-0fad-4610-82b0-830d9b3bc05e.jpg differ diff --git a/donut_or_not/donut/fabaec12-86d9-427e-a735-a521c4671bac.jpg b/donut_or_not/donut/fabaec12-86d9-427e-a735-a521c4671bac.jpg new file mode 100644 index 0000000000000000000000000000000000000000..27123626ef87742fe0d2f92586c34213fc366381 Binary files /dev/null and b/donut_or_not/donut/fabaec12-86d9-427e-a735-a521c4671bac.jpg differ diff --git a/donut_or_not/donut/ffb84bb4-f36d-43d8-932d-1cd1f5b3fb96.jpg b/donut_or_not/donut/ffb84bb4-f36d-43d8-932d-1cd1f5b3fb96.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b7b15f8e86465b24a27ce514161dfd7387354b6e Binary files /dev/null and b/donut_or_not/donut/ffb84bb4-f36d-43d8-932d-1cd1f5b3fb96.jpg differ diff --git a/donut_or_not/donut/ffca682c-888e-4aee-8bda-7ed745f41060.jpg b/donut_or_not/donut/ffca682c-888e-4aee-8bda-7ed745f41060.jpg new file mode 100644 index 0000000000000000000000000000000000000000..341b231f84e7fb96808a7952050b17c0bf863411 Binary files /dev/null and b/donut_or_not/donut/ffca682c-888e-4aee-8bda-7ed745f41060.jpg differ diff --git a/donut_or_not/scone/005157a7-0f55-462e-ae6c-4b0bed4f94ce.jpg b/donut_or_not/scone/005157a7-0f55-462e-ae6c-4b0bed4f94ce.jpg new file mode 100644 index 0000000000000000000000000000000000000000..53183783abf29b0c5f532695cf891670e0e00940 Binary files /dev/null and b/donut_or_not/scone/005157a7-0f55-462e-ae6c-4b0bed4f94ce.jpg differ diff --git a/donut_or_not/scone/00f6af45-c8b3-4b20-9bac-6b7985fbf935.jpg b/donut_or_not/scone/00f6af45-c8b3-4b20-9bac-6b7985fbf935.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0b34474af67f2db5d80d696457e7cd46303433d3 Binary files /dev/null and b/donut_or_not/scone/00f6af45-c8b3-4b20-9bac-6b7985fbf935.jpg differ diff --git a/donut_or_not/scone/02525e53-07be-4bc4-b45c-7db05c098423.jpg b/donut_or_not/scone/02525e53-07be-4bc4-b45c-7db05c098423.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3ca893b6d4b282adbdd63f89ce8b31d814974389 Binary files /dev/null and b/donut_or_not/scone/02525e53-07be-4bc4-b45c-7db05c098423.jpg differ diff --git a/donut_or_not/scone/02aa7c83-73de-4106-b637-2be3ed18edf2.jpg b/donut_or_not/scone/02aa7c83-73de-4106-b637-2be3ed18edf2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..26afe81259582fafb223d597770e36393561b35b Binary files /dev/null and b/donut_or_not/scone/02aa7c83-73de-4106-b637-2be3ed18edf2.jpg differ diff --git a/donut_or_not/scone/03b4315c-f326-4a51-ad3e-0edd1d8cfe54.jpg b/donut_or_not/scone/03b4315c-f326-4a51-ad3e-0edd1d8cfe54.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ac0c85808516022b81eb675c30a604829bb0ac2d Binary files /dev/null and b/donut_or_not/scone/03b4315c-f326-4a51-ad3e-0edd1d8cfe54.jpg differ diff --git a/donut_or_not/scone/046d8892-1463-4f65-91da-349ce59e0322.jpg b/donut_or_not/scone/046d8892-1463-4f65-91da-349ce59e0322.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fb89fc4494ac16198666acbb67ba83aebeba0b43 Binary files /dev/null and b/donut_or_not/scone/046d8892-1463-4f65-91da-349ce59e0322.jpg differ diff --git a/donut_or_not/scone/0c2ed922-c2d6-4c9b-a45d-b928c505560b.jpg b/donut_or_not/scone/0c2ed922-c2d6-4c9b-a45d-b928c505560b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..653915154c6e4f29cf9a53a0ce7f9e67de47bb19 Binary files /dev/null and b/donut_or_not/scone/0c2ed922-c2d6-4c9b-a45d-b928c505560b.jpg differ diff --git a/donut_or_not/scone/0cb8eed1-722d-4014-8e4b-d22848693e4e.jpg b/donut_or_not/scone/0cb8eed1-722d-4014-8e4b-d22848693e4e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..20f527d637f3a69f89d72c03e6516de070f3efcb Binary files /dev/null and b/donut_or_not/scone/0cb8eed1-722d-4014-8e4b-d22848693e4e.jpg differ diff --git a/donut_or_not/scone/0cce35fd-59f2-47f5-a678-51424078aff4.jpg b/donut_or_not/scone/0cce35fd-59f2-47f5-a678-51424078aff4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ee1d5032255df7cafe3239ce0883f33d6a172bf5 Binary files /dev/null and b/donut_or_not/scone/0cce35fd-59f2-47f5-a678-51424078aff4.jpg differ diff --git a/donut_or_not/scone/0da80ce1-6239-4d99-8378-9ac4f37fc5a8.jpg b/donut_or_not/scone/0da80ce1-6239-4d99-8378-9ac4f37fc5a8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4feea2ae00bd5c803302ca9645f1f7d9b63f5ad4 Binary files /dev/null and b/donut_or_not/scone/0da80ce1-6239-4d99-8378-9ac4f37fc5a8.jpg differ diff --git a/donut_or_not/scone/0f1e1c7f-1f39-4918-822e-560975a17db9.jpg b/donut_or_not/scone/0f1e1c7f-1f39-4918-822e-560975a17db9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d43f3b7a8de99914be74d0b6c5689aa8068afeb0 Binary files /dev/null and b/donut_or_not/scone/0f1e1c7f-1f39-4918-822e-560975a17db9.jpg differ diff --git a/donut_or_not/scone/0f2b0e09-462e-44e0-a55d-e2311d5ed359.jpg b/donut_or_not/scone/0f2b0e09-462e-44e0-a55d-e2311d5ed359.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0bc0e8cdfb71f0dd7c79a994dcf6e94f32004b94 Binary files /dev/null and b/donut_or_not/scone/0f2b0e09-462e-44e0-a55d-e2311d5ed359.jpg differ diff --git a/donut_or_not/scone/10b53ee0-a8f2-4489-9bcf-efac713077fe.jpg b/donut_or_not/scone/10b53ee0-a8f2-4489-9bcf-efac713077fe.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9875c9c20f3054bf718cad70ad4091544918753f Binary files /dev/null and b/donut_or_not/scone/10b53ee0-a8f2-4489-9bcf-efac713077fe.jpg differ diff --git a/donut_or_not/scone/14a76c58-7e20-48f5-907f-133d4daf680f.jpg b/donut_or_not/scone/14a76c58-7e20-48f5-907f-133d4daf680f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ffdae78b4ba6a04d30efe59c6a32dc0a8f3b1c4b Binary files /dev/null and b/donut_or_not/scone/14a76c58-7e20-48f5-907f-133d4daf680f.jpg differ diff --git a/donut_or_not/scone/1b6bc5db-5dd1-4c08-bf31-cc74c5e1fe41.jpg b/donut_or_not/scone/1b6bc5db-5dd1-4c08-bf31-cc74c5e1fe41.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fb89fc4494ac16198666acbb67ba83aebeba0b43 Binary files /dev/null and b/donut_or_not/scone/1b6bc5db-5dd1-4c08-bf31-cc74c5e1fe41.jpg differ diff --git a/donut_or_not/scone/1c2bb20d-e43a-40df-8adb-98c94b4a781e.jpg b/donut_or_not/scone/1c2bb20d-e43a-40df-8adb-98c94b4a781e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bb1064bf35e5c94313e944f3c43a4e2ab89c57ee Binary files /dev/null and b/donut_or_not/scone/1c2bb20d-e43a-40df-8adb-98c94b4a781e.jpg differ diff --git a/donut_or_not/scone/1cd62a49-4bf8-4b7f-baff-91abc4b847d9.jpg b/donut_or_not/scone/1cd62a49-4bf8-4b7f-baff-91abc4b847d9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2bff7fefd703ded8e4d2a41df321e5b2cd5d57e2 Binary files /dev/null and b/donut_or_not/scone/1cd62a49-4bf8-4b7f-baff-91abc4b847d9.jpg differ diff --git a/donut_or_not/scone/1d7902f9-dbf6-491d-8865-500af1865841.jpg b/donut_or_not/scone/1d7902f9-dbf6-491d-8865-500af1865841.jpg new file mode 100644 index 0000000000000000000000000000000000000000..03478b9df8e452790ac1e3ec7e1ce9b842aa7cdc Binary files /dev/null and b/donut_or_not/scone/1d7902f9-dbf6-491d-8865-500af1865841.jpg differ diff --git a/donut_or_not/scone/2054bece-8172-4048-bede-a989d191b2dc.jpg b/donut_or_not/scone/2054bece-8172-4048-bede-a989d191b2dc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e001a7234849df9a5cd150f1f2d8538bb3c172dd Binary files /dev/null and b/donut_or_not/scone/2054bece-8172-4048-bede-a989d191b2dc.jpg differ diff --git a/donut_or_not/scone/20d2318b-a8e3-4feb-9e39-1873aa73045c.jpg b/donut_or_not/scone/20d2318b-a8e3-4feb-9e39-1873aa73045c.jpg new file mode 100644 index 0000000000000000000000000000000000000000..38d75e111b9d5913cd116755fd871f18c69401a1 Binary files /dev/null and b/donut_or_not/scone/20d2318b-a8e3-4feb-9e39-1873aa73045c.jpg differ diff --git a/donut_or_not/scone/2519971c-b70f-4c47-8817-479e9ba853fa.jpg b/donut_or_not/scone/2519971c-b70f-4c47-8817-479e9ba853fa.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e21c43087af8bbe0eeebcfd8e2ae4bcad568d8b Binary files /dev/null and b/donut_or_not/scone/2519971c-b70f-4c47-8817-479e9ba853fa.jpg differ diff --git a/donut_or_not/scone/263a796b-1b72-40d8-a824-636022662f08.jpg b/donut_or_not/scone/263a796b-1b72-40d8-a824-636022662f08.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbe727fc25b6f5a8733e654915f6c56ba10315af Binary files /dev/null and b/donut_or_not/scone/263a796b-1b72-40d8-a824-636022662f08.jpg differ diff --git a/donut_or_not/scone/26469b47-4a4d-4e65-98c5-d3bbc9e3b37d.jpg b/donut_or_not/scone/26469b47-4a4d-4e65-98c5-d3bbc9e3b37d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9900878b628e3b422202834360bebd034b304cbb Binary files /dev/null and b/donut_or_not/scone/26469b47-4a4d-4e65-98c5-d3bbc9e3b37d.jpg differ diff --git a/donut_or_not/scone/2a989f1d-262d-4d0e-ad75-1df05b8a128b.jpg b/donut_or_not/scone/2a989f1d-262d-4d0e-ad75-1df05b8a128b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9736c6e9c21aac5640b98b4dfdd6d07c26900723 Binary files /dev/null and b/donut_or_not/scone/2a989f1d-262d-4d0e-ad75-1df05b8a128b.jpg differ diff --git a/donut_or_not/scone/2c4095da-64af-456f-89db-8921ed4c322d.jpg b/donut_or_not/scone/2c4095da-64af-456f-89db-8921ed4c322d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1a634021a6fc8d3c4b762ddfd979dfdd934f68b9 Binary files /dev/null and b/donut_or_not/scone/2c4095da-64af-456f-89db-8921ed4c322d.jpg differ diff --git a/donut_or_not/scone/2f52d49f-5455-48cb-9d1f-06ce495c5ed6.jpg b/donut_or_not/scone/2f52d49f-5455-48cb-9d1f-06ce495c5ed6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6d7ef7ae3a9dbd4be86c43aad6a60b6447a7c7fa Binary files /dev/null and b/donut_or_not/scone/2f52d49f-5455-48cb-9d1f-06ce495c5ed6.jpg differ diff --git a/donut_or_not/scone/3385ee03-9b64-4276-a3b5-27430993031a.jpg b/donut_or_not/scone/3385ee03-9b64-4276-a3b5-27430993031a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dbe727fc25b6f5a8733e654915f6c56ba10315af Binary files /dev/null and b/donut_or_not/scone/3385ee03-9b64-4276-a3b5-27430993031a.jpg differ diff --git a/donut_or_not/scone/34e8dfba-da70-4258-9225-b5b5b678b569.jpg b/donut_or_not/scone/34e8dfba-da70-4258-9225-b5b5b678b569.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2d5491ac5518d3fe9e23ae2fc80aafb303bf19e4 Binary files /dev/null and b/donut_or_not/scone/34e8dfba-da70-4258-9225-b5b5b678b569.jpg differ diff --git a/donut_or_not/scone/351f17a1-fbc4-4de4-ab51-e55fa081eb70.jpg b/donut_or_not/scone/351f17a1-fbc4-4de4-ab51-e55fa081eb70.jpg new file mode 100644 index 0000000000000000000000000000000000000000..530ed70d01e8a5ddb450a1136101476cb60f4656 Binary files /dev/null and b/donut_or_not/scone/351f17a1-fbc4-4de4-ab51-e55fa081eb70.jpg differ diff --git a/donut_or_not/scone/3696e97e-fe3e-4854-9f77-fb91c882585a.jpg b/donut_or_not/scone/3696e97e-fe3e-4854-9f77-fb91c882585a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..150e717dffcb1ed83283bff958d18270515e3cd4 Binary files /dev/null and b/donut_or_not/scone/3696e97e-fe3e-4854-9f77-fb91c882585a.jpg differ diff --git a/donut_or_not/scone/395dc4cc-0e27-463b-9cb7-09864f50a73a.jpg b/donut_or_not/scone/395dc4cc-0e27-463b-9cb7-09864f50a73a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..765d0226ccd0d6eb9ac5414d67985d73a9e13c1c Binary files /dev/null and b/donut_or_not/scone/395dc4cc-0e27-463b-9cb7-09864f50a73a.jpg differ diff --git a/donut_or_not/scone/3c808517-45cf-47cf-b9f2-0a92f52a22b8.jpg b/donut_or_not/scone/3c808517-45cf-47cf-b9f2-0a92f52a22b8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e00092011a7d544eee4f4a6ff370a84fd16da0de Binary files /dev/null and b/donut_or_not/scone/3c808517-45cf-47cf-b9f2-0a92f52a22b8.jpg differ diff --git a/donut_or_not/scone/3d400d6f-2d60-4d0f-b343-b6aadcea5241.jpg b/donut_or_not/scone/3d400d6f-2d60-4d0f-b343-b6aadcea5241.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8d83236a885ffa3003e85e7eae866238c71c57f6 Binary files /dev/null and b/donut_or_not/scone/3d400d6f-2d60-4d0f-b343-b6aadcea5241.jpg differ diff --git a/donut_or_not/scone/400bf972-5cbd-4be4-9186-f33359249939.jpg b/donut_or_not/scone/400bf972-5cbd-4be4-9186-f33359249939.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82969f1256528f247bbf6edab70da9a6c61332d7 Binary files /dev/null and b/donut_or_not/scone/400bf972-5cbd-4be4-9186-f33359249939.jpg differ diff --git a/donut_or_not/scone/417662f3-a997-4c88-a44c-4794841b178b.jpg b/donut_or_not/scone/417662f3-a997-4c88-a44c-4794841b178b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c66ccbab6a078939532a3e3cf0ebbf408c5cac9 Binary files /dev/null and b/donut_or_not/scone/417662f3-a997-4c88-a44c-4794841b178b.jpg differ diff --git a/donut_or_not/scone/42a8d8eb-5fb6-4171-b001-9238ba88e8e4.jpg b/donut_or_not/scone/42a8d8eb-5fb6-4171-b001-9238ba88e8e4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d318a6199bb387b38eabe8c98b18f137090399c4 Binary files /dev/null and b/donut_or_not/scone/42a8d8eb-5fb6-4171-b001-9238ba88e8e4.jpg differ diff --git a/donut_or_not/scone/45070184-2216-4b28-89b8-b8d2b70ce0c3.jpg b/donut_or_not/scone/45070184-2216-4b28-89b8-b8d2b70ce0c3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..08a1b4b6374b9ddfac6a51965e64f2a0e100e109 Binary files /dev/null and b/donut_or_not/scone/45070184-2216-4b28-89b8-b8d2b70ce0c3.jpg differ diff --git a/donut_or_not/scone/45683d02-4fbf-4e14-96d4-0aecb145fb0d.jpg b/donut_or_not/scone/45683d02-4fbf-4e14-96d4-0aecb145fb0d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5bb8ad17c12a910c324f60ace3ba13a50f8e8ab6 Binary files /dev/null and b/donut_or_not/scone/45683d02-4fbf-4e14-96d4-0aecb145fb0d.jpg differ diff --git a/donut_or_not/scone/4631cc73-8a81-4666-86ea-f7a07cfca4c1.jpg b/donut_or_not/scone/4631cc73-8a81-4666-86ea-f7a07cfca4c1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..65641bb8ef7d230286fdacb7fef45262fd1aa648 Binary files /dev/null and b/donut_or_not/scone/4631cc73-8a81-4666-86ea-f7a07cfca4c1.jpg differ diff --git a/donut_or_not/scone/46863fa6-c50f-4c18-8bdb-b79f80f10c60.jpg b/donut_or_not/scone/46863fa6-c50f-4c18-8bdb-b79f80f10c60.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8714034eb576929a5e73f2e4accfe2496e09c17c Binary files /dev/null and b/donut_or_not/scone/46863fa6-c50f-4c18-8bdb-b79f80f10c60.jpg differ diff --git a/donut_or_not/scone/47a93b1e-ddb4-4e7f-bbcf-7c0906c689f6.jpg b/donut_or_not/scone/47a93b1e-ddb4-4e7f-bbcf-7c0906c689f6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..01b3a03482daedf339c503d247fcb7a103180bca Binary files /dev/null and b/donut_or_not/scone/47a93b1e-ddb4-4e7f-bbcf-7c0906c689f6.jpg differ diff --git a/donut_or_not/scone/47fac479-d117-4866-ac3e-98cb692f114a.jpg b/donut_or_not/scone/47fac479-d117-4866-ac3e-98cb692f114a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8526e394ac064f0be0f3f555cf0aea9f2d90815 Binary files /dev/null and b/donut_or_not/scone/47fac479-d117-4866-ac3e-98cb692f114a.jpg differ diff --git a/donut_or_not/scone/4af344c7-b8df-4d27-bf4b-b2a43eb5a9d4.JPG b/donut_or_not/scone/4af344c7-b8df-4d27-bf4b-b2a43eb5a9d4.JPG new file mode 100644 index 0000000000000000000000000000000000000000..39840afa77281af2a5322b11c207b2c6ae55016b Binary files /dev/null and b/donut_or_not/scone/4af344c7-b8df-4d27-bf4b-b2a43eb5a9d4.JPG differ diff --git a/donut_or_not/scone/4b60c1f3-c4ce-4349-8014-dddc8daad286.jpg b/donut_or_not/scone/4b60c1f3-c4ce-4349-8014-dddc8daad286.jpg new file mode 100644 index 0000000000000000000000000000000000000000..58619483e39d109a254849fbbd5ce85d11ca9a18 Binary files /dev/null and b/donut_or_not/scone/4b60c1f3-c4ce-4349-8014-dddc8daad286.jpg differ diff --git a/donut_or_not/scone/4c9abce6-0604-40db-8ef3-14ad986e8b10.jpg b/donut_or_not/scone/4c9abce6-0604-40db-8ef3-14ad986e8b10.jpg new file mode 100644 index 0000000000000000000000000000000000000000..43f0ed38b910c34619a4e901899aff5d1a8aeeca Binary files /dev/null and b/donut_or_not/scone/4c9abce6-0604-40db-8ef3-14ad986e8b10.jpg differ diff --git a/donut_or_not/scone/4e09bf50-8ae4-45a1-b5b4-54676e969233.jpg b/donut_or_not/scone/4e09bf50-8ae4-45a1-b5b4-54676e969233.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d43f3b7a8de99914be74d0b6c5689aa8068afeb0 Binary files /dev/null and b/donut_or_not/scone/4e09bf50-8ae4-45a1-b5b4-54676e969233.jpg differ diff --git a/donut_or_not/scone/525f6f64-a6b0-4b3b-82a0-25e23a6d4d1b.jpg b/donut_or_not/scone/525f6f64-a6b0-4b3b-82a0-25e23a6d4d1b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2ac18b6c73ec0d5797105db859c4e578226649fb Binary files /dev/null and b/donut_or_not/scone/525f6f64-a6b0-4b3b-82a0-25e23a6d4d1b.jpg differ diff --git a/donut_or_not/scone/52979f82-7e67-4ebd-a7cc-e42a5405e5d3.jpeg b/donut_or_not/scone/52979f82-7e67-4ebd-a7cc-e42a5405e5d3.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..bb1efcd3ee96491e8043b2ac669a4fea8913a4f7 Binary files /dev/null and b/donut_or_not/scone/52979f82-7e67-4ebd-a7cc-e42a5405e5d3.jpeg differ diff --git a/donut_or_not/scone/5322fbc8-ef63-43f8-a2b8-81027bc51597.jpg b/donut_or_not/scone/5322fbc8-ef63-43f8-a2b8-81027bc51597.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98fff6ee2a2227d754b1be854fbb30e8cef78462 Binary files /dev/null and b/donut_or_not/scone/5322fbc8-ef63-43f8-a2b8-81027bc51597.jpg differ diff --git a/donut_or_not/scone/567b0194-f810-4ead-ab42-3204150d52d8.jpg b/donut_or_not/scone/567b0194-f810-4ead-ab42-3204150d52d8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..de11f47cf699c2a26c7b8aabaf002fe9475cd652 Binary files /dev/null and b/donut_or_not/scone/567b0194-f810-4ead-ab42-3204150d52d8.jpg differ diff --git a/donut_or_not/scone/57472c7c-b5cc-4d29-b68a-521dd8b9a9ff.jpg b/donut_or_not/scone/57472c7c-b5cc-4d29-b68a-521dd8b9a9ff.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2e03e2fdd21e7732d89adc52faf4d0dcff42b587 Binary files /dev/null and b/donut_or_not/scone/57472c7c-b5cc-4d29-b68a-521dd8b9a9ff.jpg differ diff --git a/donut_or_not/scone/587774ff-528b-480c-bb8c-5087c3333e3e.jpg b/donut_or_not/scone/587774ff-528b-480c-bb8c-5087c3333e3e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..60968d416eda7a711681a249ac7b94f55dbb84f7 Binary files /dev/null and b/donut_or_not/scone/587774ff-528b-480c-bb8c-5087c3333e3e.jpg differ diff --git a/donut_or_not/scone/5d569a00-eeeb-4f57-8395-fc007413c2b7.jpg b/donut_or_not/scone/5d569a00-eeeb-4f57-8395-fc007413c2b7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..53183783abf29b0c5f532695cf891670e0e00940 Binary files /dev/null and b/donut_or_not/scone/5d569a00-eeeb-4f57-8395-fc007413c2b7.jpg differ diff --git a/donut_or_not/scone/5d8a8147-b690-4989-9bd8-e78a0cb19566.jpg b/donut_or_not/scone/5d8a8147-b690-4989-9bd8-e78a0cb19566.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c66ccbab6a078939532a3e3cf0ebbf408c5cac9 Binary files /dev/null and b/donut_or_not/scone/5d8a8147-b690-4989-9bd8-e78a0cb19566.jpg differ diff --git a/donut_or_not/scone/605ec0d7-6d2e-4153-a9d4-d76cb7c9b831.jpg b/donut_or_not/scone/605ec0d7-6d2e-4153-a9d4-d76cb7c9b831.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8714034eb576929a5e73f2e4accfe2496e09c17c Binary files /dev/null and b/donut_or_not/scone/605ec0d7-6d2e-4153-a9d4-d76cb7c9b831.jpg differ diff --git a/donut_or_not/scone/615ed9b3-bf71-4276-bd2c-d67f3b00cbec.jpg b/donut_or_not/scone/615ed9b3-bf71-4276-bd2c-d67f3b00cbec.jpg new file mode 100644 index 0000000000000000000000000000000000000000..541a528dac69ed69ccd98e2dcc0abbcf3a14c2ea Binary files /dev/null and b/donut_or_not/scone/615ed9b3-bf71-4276-bd2c-d67f3b00cbec.jpg differ diff --git a/donut_or_not/scone/61802401-edce-4e40-99d1-61539ae9e729.JPG b/donut_or_not/scone/61802401-edce-4e40-99d1-61539ae9e729.JPG new file mode 100644 index 0000000000000000000000000000000000000000..6e0c215382119db101a3a867194452a89f339bef Binary files /dev/null and b/donut_or_not/scone/61802401-edce-4e40-99d1-61539ae9e729.JPG differ diff --git a/donut_or_not/scone/61855bbc-8d7e-4daa-b187-983951b53c0d.jpg b/donut_or_not/scone/61855bbc-8d7e-4daa-b187-983951b53c0d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..639704392cbcdd92c590bf7519013c121be9bca6 Binary files /dev/null and b/donut_or_not/scone/61855bbc-8d7e-4daa-b187-983951b53c0d.jpg differ diff --git a/donut_or_not/scone/63760e91-a265-49e0-acd2-2777f013fcd1.jpg b/donut_or_not/scone/63760e91-a265-49e0-acd2-2777f013fcd1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ecbd83592686c8a4a57253a09ccc3eee3aed10b0 Binary files /dev/null and b/donut_or_not/scone/63760e91-a265-49e0-acd2-2777f013fcd1.jpg differ diff --git a/donut_or_not/scone/64be304d-e342-4372-b65e-d8052865c99e.jpg b/donut_or_not/scone/64be304d-e342-4372-b65e-d8052865c99e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..05f565174e48e048e068c060ba263c31cc279d4e Binary files /dev/null and b/donut_or_not/scone/64be304d-e342-4372-b65e-d8052865c99e.jpg differ diff --git a/donut_or_not/scone/65ee5c4a-78c3-4987-a9a7-b92f3bac897e.jpg b/donut_or_not/scone/65ee5c4a-78c3-4987-a9a7-b92f3bac897e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fe9d86ceabf562f506095e61c0327f633611f9de Binary files /dev/null and b/donut_or_not/scone/65ee5c4a-78c3-4987-a9a7-b92f3bac897e.jpg differ diff --git a/donut_or_not/scone/6877f1ac-5dbb-4d95-98a3-286347bdbbd9.jpg b/donut_or_not/scone/6877f1ac-5dbb-4d95-98a3-286347bdbbd9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..23811c992f69f99b390aac6af2677e16457abe39 Binary files /dev/null and b/donut_or_not/scone/6877f1ac-5dbb-4d95-98a3-286347bdbbd9.jpg differ diff --git a/donut_or_not/scone/69a147a8-0174-4059-a298-9241d853612d.jpg b/donut_or_not/scone/69a147a8-0174-4059-a298-9241d853612d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..61e8d225f4d1186f518b350c0ab255b4aaad8d6f Binary files /dev/null and b/donut_or_not/scone/69a147a8-0174-4059-a298-9241d853612d.jpg differ diff --git a/donut_or_not/scone/6b4c6461-3114-4186-9291-a80ae28b7282.jpg b/donut_or_not/scone/6b4c6461-3114-4186-9291-a80ae28b7282.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b526ca123925506ef79b755cb5586987be3f59d4 Binary files /dev/null and b/donut_or_not/scone/6b4c6461-3114-4186-9291-a80ae28b7282.jpg differ diff --git a/donut_or_not/scone/6d589620-0985-4d89-af8c-a35e812b1334.jpg b/donut_or_not/scone/6d589620-0985-4d89-af8c-a35e812b1334.jpg new file mode 100644 index 0000000000000000000000000000000000000000..05f565174e48e048e068c060ba263c31cc279d4e Binary files /dev/null and b/donut_or_not/scone/6d589620-0985-4d89-af8c-a35e812b1334.jpg differ diff --git a/donut_or_not/scone/6de44daf-3436-4b9b-8e1f-0d8f17f9036e.jpg b/donut_or_not/scone/6de44daf-3436-4b9b-8e1f-0d8f17f9036e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f273c9a3ca71ff9d17191680e67ea220321a20cc Binary files /dev/null and b/donut_or_not/scone/6de44daf-3436-4b9b-8e1f-0d8f17f9036e.jpg differ diff --git a/donut_or_not/scone/74349820-b6dd-43a7-8434-427a9047140d.png b/donut_or_not/scone/74349820-b6dd-43a7-8434-427a9047140d.png new file mode 100644 index 0000000000000000000000000000000000000000..214d782db3a629df113186a6e42d9e14f0460fd2 Binary files /dev/null and b/donut_or_not/scone/74349820-b6dd-43a7-8434-427a9047140d.png differ diff --git a/donut_or_not/scone/745a57ee-ead6-4f32-8e02-832ec02a9b4d.jpg b/donut_or_not/scone/745a57ee-ead6-4f32-8e02-832ec02a9b4d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e50102deed1905d493f048c2926399e2033cb17 Binary files /dev/null and b/donut_or_not/scone/745a57ee-ead6-4f32-8e02-832ec02a9b4d.jpg differ diff --git a/donut_or_not/scone/767df7b9-f105-48b6-8025-73bbcf47189e.jpg b/donut_or_not/scone/767df7b9-f105-48b6-8025-73bbcf47189e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e11fffe5b702d988b93fd27b04c5468350f58570 Binary files /dev/null and b/donut_or_not/scone/767df7b9-f105-48b6-8025-73bbcf47189e.jpg differ diff --git a/donut_or_not/scone/77370302-777f-497d-9bd9-795227f3f7ac.JPG b/donut_or_not/scone/77370302-777f-497d-9bd9-795227f3f7ac.JPG new file mode 100644 index 0000000000000000000000000000000000000000..1dacd040f4647d8e2102a9fd374e2fa59df3c99b Binary files /dev/null and b/donut_or_not/scone/77370302-777f-497d-9bd9-795227f3f7ac.JPG differ diff --git a/donut_or_not/scone/77652788-b671-4b20-a948-aae6927e97bd.jpg b/donut_or_not/scone/77652788-b671-4b20-a948-aae6927e97bd.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cc7f0300dad23672699c5c1cadc8331603b6a96f Binary files /dev/null and b/donut_or_not/scone/77652788-b671-4b20-a948-aae6927e97bd.jpg differ diff --git a/donut_or_not/scone/78119d75-272b-4eaf-8264-e208cb1e4032.JPG b/donut_or_not/scone/78119d75-272b-4eaf-8264-e208cb1e4032.JPG new file mode 100644 index 0000000000000000000000000000000000000000..0cf55855c33e6546e675fde4901e69cf1ac4e370 Binary files /dev/null and b/donut_or_not/scone/78119d75-272b-4eaf-8264-e208cb1e4032.JPG differ diff --git a/donut_or_not/scone/78a8842c-02b4-478e-977d-51fa1b207a28.jpg b/donut_or_not/scone/78a8842c-02b4-478e-977d-51fa1b207a28.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ac0c85808516022b81eb675c30a604829bb0ac2d Binary files /dev/null and b/donut_or_not/scone/78a8842c-02b4-478e-977d-51fa1b207a28.jpg differ diff --git a/donut_or_not/scone/7c1f33e9-e9ae-476c-9871-5111180f7aa7.jpg b/donut_or_not/scone/7c1f33e9-e9ae-476c-9871-5111180f7aa7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3b44021126fa2204fe01fb4413a6f0fe9ef6b1d6 Binary files /dev/null and b/donut_or_not/scone/7c1f33e9-e9ae-476c-9871-5111180f7aa7.jpg differ diff --git a/donut_or_not/scone/7c61ffdf-51bb-4523-8606-d783e712dc3d.jpg b/donut_or_not/scone/7c61ffdf-51bb-4523-8606-d783e712dc3d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..55803c4268d859a90996d1c9d39e18513eafb0c9 Binary files /dev/null and b/donut_or_not/scone/7c61ffdf-51bb-4523-8606-d783e712dc3d.jpg differ diff --git a/donut_or_not/scone/7de414e7-3363-4c3e-ad6a-f9430581ee26.jpg b/donut_or_not/scone/7de414e7-3363-4c3e-ad6a-f9430581ee26.jpg new file mode 100644 index 0000000000000000000000000000000000000000..530ed70d01e8a5ddb450a1136101476cb60f4656 Binary files /dev/null and b/donut_or_not/scone/7de414e7-3363-4c3e-ad6a-f9430581ee26.jpg differ diff --git a/donut_or_not/scone/80af5d23-c417-48ba-91d9-74834e4c2b94.jpg b/donut_or_not/scone/80af5d23-c417-48ba-91d9-74834e4c2b94.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2b3effcc0a8a0fb6b10875e2808936f85316ca52 Binary files /dev/null and b/donut_or_not/scone/80af5d23-c417-48ba-91d9-74834e4c2b94.jpg differ diff --git a/donut_or_not/scone/8312a585-1934-4665-872d-c95ded5e6084.jpg b/donut_or_not/scone/8312a585-1934-4665-872d-c95ded5e6084.jpg new file mode 100644 index 0000000000000000000000000000000000000000..71849123084190450df4ff5b09de608b925f3acb Binary files /dev/null and b/donut_or_not/scone/8312a585-1934-4665-872d-c95ded5e6084.jpg differ diff --git a/donut_or_not/scone/83c16cf0-7fa7-4d98-980e-d28ba842aee0.jpg b/donut_or_not/scone/83c16cf0-7fa7-4d98-980e-d28ba842aee0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a5c49c2ccbe35476b0d796b0cedac8f3710d832a Binary files /dev/null and b/donut_or_not/scone/83c16cf0-7fa7-4d98-980e-d28ba842aee0.jpg differ diff --git a/donut_or_not/scone/84398858-dfca-4206-9af4-611ef39305ad.jpg b/donut_or_not/scone/84398858-dfca-4206-9af4-611ef39305ad.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e50102deed1905d493f048c2926399e2033cb17 Binary files /dev/null and b/donut_or_not/scone/84398858-dfca-4206-9af4-611ef39305ad.jpg differ diff --git a/donut_or_not/scone/875d1bde-7e13-4548-b30a-769efab94cc1.jpg b/donut_or_not/scone/875d1bde-7e13-4548-b30a-769efab94cc1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3f50de213e58a8ccd198f41799870e10e81ddc1e Binary files /dev/null and b/donut_or_not/scone/875d1bde-7e13-4548-b30a-769efab94cc1.jpg differ diff --git a/donut_or_not/scone/87eef459-ad16-4d86-a17a-44180cf4db2e.jpg b/donut_or_not/scone/87eef459-ad16-4d86-a17a-44180cf4db2e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5acc99ad72beb141f822f0b3f4f7e61e6e9e58e5 Binary files /dev/null and b/donut_or_not/scone/87eef459-ad16-4d86-a17a-44180cf4db2e.jpg differ diff --git a/donut_or_not/scone/89a03e60-66ff-427f-a073-cdfab60678df.jpg b/donut_or_not/scone/89a03e60-66ff-427f-a073-cdfab60678df.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5b544d0d6574daf9b2c1a83e72c6560dd2365b1f Binary files /dev/null and b/donut_or_not/scone/89a03e60-66ff-427f-a073-cdfab60678df.jpg differ diff --git a/donut_or_not/scone/8cfe01c4-e085-4243-9fe2-773647e3f3c9.jpg b/donut_or_not/scone/8cfe01c4-e085-4243-9fe2-773647e3f3c9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ede320eab01e01db0532a24ad77fee8fc8f1155b Binary files /dev/null and b/donut_or_not/scone/8cfe01c4-e085-4243-9fe2-773647e3f3c9.jpg differ diff --git a/donut_or_not/scone/8e356172-852c-407b-9c13-f8efd49a4a84.jpg b/donut_or_not/scone/8e356172-852c-407b-9c13-f8efd49a4a84.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3b44021126fa2204fe01fb4413a6f0fe9ef6b1d6 Binary files /dev/null and b/donut_or_not/scone/8e356172-852c-407b-9c13-f8efd49a4a84.jpg differ diff --git a/donut_or_not/scone/8e93b0c8-c9ac-41fa-8d8d-41ec3a492630.jpg b/donut_or_not/scone/8e93b0c8-c9ac-41fa-8d8d-41ec3a492630.jpg new file mode 100644 index 0000000000000000000000000000000000000000..765d0226ccd0d6eb9ac5414d67985d73a9e13c1c Binary files /dev/null and b/donut_or_not/scone/8e93b0c8-c9ac-41fa-8d8d-41ec3a492630.jpg differ diff --git a/donut_or_not/scone/8f303179-a49a-4bd5-9e9b-df394de2e467.jpg b/donut_or_not/scone/8f303179-a49a-4bd5-9e9b-df394de2e467.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a5c49c2ccbe35476b0d796b0cedac8f3710d832a Binary files /dev/null and b/donut_or_not/scone/8f303179-a49a-4bd5-9e9b-df394de2e467.jpg differ diff --git a/donut_or_not/scone/9320a60b-5025-44b6-b332-d2d3fb60adac.jpg b/donut_or_not/scone/9320a60b-5025-44b6-b332-d2d3fb60adac.jpg new file mode 100644 index 0000000000000000000000000000000000000000..de11f47cf699c2a26c7b8aabaf002fe9475cd652 Binary files /dev/null and b/donut_or_not/scone/9320a60b-5025-44b6-b332-d2d3fb60adac.jpg differ diff --git a/donut_or_not/scone/9449526c-4e86-411e-8922-053b871e0113.jpg b/donut_or_not/scone/9449526c-4e86-411e-8922-053b871e0113.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1ac159f917adacafc02e7ef4fe6a608aa7817d80 Binary files /dev/null and b/donut_or_not/scone/9449526c-4e86-411e-8922-053b871e0113.jpg differ diff --git a/donut_or_not/scone/94527e6b-8624-4d4c-8b06-fd7fc6929f63.jpg b/donut_or_not/scone/94527e6b-8624-4d4c-8b06-fd7fc6929f63.jpg new file mode 100644 index 0000000000000000000000000000000000000000..58619483e39d109a254849fbbd5ce85d11ca9a18 Binary files /dev/null and b/donut_or_not/scone/94527e6b-8624-4d4c-8b06-fd7fc6929f63.jpg differ diff --git a/donut_or_not/scone/968f19e3-2e16-42a7-a975-70d5414d43eb.jpg b/donut_or_not/scone/968f19e3-2e16-42a7-a975-70d5414d43eb.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ba292557cc3d576b71a158d40c61c8bd165d9d82 Binary files /dev/null and b/donut_or_not/scone/968f19e3-2e16-42a7-a975-70d5414d43eb.jpg differ diff --git a/donut_or_not/scone/98a40ca0-7cf2-418b-bd88-c23a33f076f7.jpg b/donut_or_not/scone/98a40ca0-7cf2-418b-bd88-c23a33f076f7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a1821dd0bfc1546b085aefe96869629a080e4afb Binary files /dev/null and b/donut_or_not/scone/98a40ca0-7cf2-418b-bd88-c23a33f076f7.jpg differ diff --git a/donut_or_not/scone/9a2eedf8-bdcb-418a-aea7-e99e8b8fae65.jpg b/donut_or_not/scone/9a2eedf8-bdcb-418a-aea7-e99e8b8fae65.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9875c9c20f3054bf718cad70ad4091544918753f Binary files /dev/null and b/donut_or_not/scone/9a2eedf8-bdcb-418a-aea7-e99e8b8fae65.jpg differ diff --git a/donut_or_not/scone/9b33f506-2695-4f03-aebd-948566114a9f.png b/donut_or_not/scone/9b33f506-2695-4f03-aebd-948566114a9f.png new file mode 100644 index 0000000000000000000000000000000000000000..63e2b339d9cba6463587baf68893f6479eba9801 Binary files /dev/null and b/donut_or_not/scone/9b33f506-2695-4f03-aebd-948566114a9f.png differ diff --git a/donut_or_not/scone/9dddf528-615b-4996-9c86-e499a61d3ba2.jpg b/donut_or_not/scone/9dddf528-615b-4996-9c86-e499a61d3ba2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fe9d86ceabf562f506095e61c0327f633611f9de Binary files /dev/null and b/donut_or_not/scone/9dddf528-615b-4996-9c86-e499a61d3ba2.jpg differ diff --git a/donut_or_not/scone/9e481345-0d26-49f6-8e38-438d7efb0088.jpg b/donut_or_not/scone/9e481345-0d26-49f6-8e38-438d7efb0088.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b2c2a587484f25cb45c7fa07b1191f627508701e Binary files /dev/null and b/donut_or_not/scone/9e481345-0d26-49f6-8e38-438d7efb0088.jpg differ diff --git a/donut_or_not/scone/a06f621c-21b1-4894-ae7c-84f01df018b9.jpg b/donut_or_not/scone/a06f621c-21b1-4894-ae7c-84f01df018b9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..837d6f235d81b290a77d9d9f813fdda8b7173103 Binary files /dev/null and b/donut_or_not/scone/a06f621c-21b1-4894-ae7c-84f01df018b9.jpg differ diff --git a/donut_or_not/scone/a19541ca-e2fd-4268-bebf-929a7b056ea0.jpg b/donut_or_not/scone/a19541ca-e2fd-4268-bebf-929a7b056ea0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..68a63e6312def0a80ecb781ba83403f951c6b686 Binary files /dev/null and b/donut_or_not/scone/a19541ca-e2fd-4268-bebf-929a7b056ea0.jpg differ diff --git a/donut_or_not/scone/a26337de-9a29-42a6-91db-85b617463ebe.jpg b/donut_or_not/scone/a26337de-9a29-42a6-91db-85b617463ebe.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bac58f8a36ab7dccfef32dce54c7143095f6ce5c Binary files /dev/null and b/donut_or_not/scone/a26337de-9a29-42a6-91db-85b617463ebe.jpg differ diff --git a/donut_or_not/scone/a4a29a86-5c0d-4adb-9f23-1b6d9cb09fa7.jpg b/donut_or_not/scone/a4a29a86-5c0d-4adb-9f23-1b6d9cb09fa7.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7c3e5de4442b66a827f2eeed182ab0ab894d0386 Binary files /dev/null and b/donut_or_not/scone/a4a29a86-5c0d-4adb-9f23-1b6d9cb09fa7.jpg differ diff --git a/donut_or_not/scone/a60fe509-7324-42b2-a173-74755164c017.jpg b/donut_or_not/scone/a60fe509-7324-42b2-a173-74755164c017.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3dc98966e8da3ce5808473ef0ff6d1f618df9640 Binary files /dev/null and b/donut_or_not/scone/a60fe509-7324-42b2-a173-74755164c017.jpg differ diff --git a/donut_or_not/scone/a61945d6-735d-4e92-a55a-61f134cf3da0.jpg b/donut_or_not/scone/a61945d6-735d-4e92-a55a-61f134cf3da0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..150e717dffcb1ed83283bff958d18270515e3cd4 Binary files /dev/null and b/donut_or_not/scone/a61945d6-735d-4e92-a55a-61f134cf3da0.jpg differ diff --git a/donut_or_not/scone/a642a732-b96f-4e32-a887-8653c4d341fc.jpg b/donut_or_not/scone/a642a732-b96f-4e32-a887-8653c4d341fc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1a634021a6fc8d3c4b762ddfd979dfdd934f68b9 Binary files /dev/null and b/donut_or_not/scone/a642a732-b96f-4e32-a887-8653c4d341fc.jpg differ diff --git a/donut_or_not/scone/a8f771c2-3886-4204-b999-05b782894427.jpg b/donut_or_not/scone/a8f771c2-3886-4204-b999-05b782894427.jpg new file mode 100644 index 0000000000000000000000000000000000000000..db1b902f241803c04cce78153a2bcc15ed21874c Binary files /dev/null and b/donut_or_not/scone/a8f771c2-3886-4204-b999-05b782894427.jpg differ diff --git a/donut_or_not/scone/a9126b23-e3bf-4cd5-8346-d26ad5ae17aa.jpg b/donut_or_not/scone/a9126b23-e3bf-4cd5-8346-d26ad5ae17aa.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b2855d8cd36999c270ba5adc4a0925a16650bfd5 Binary files /dev/null and b/donut_or_not/scone/a9126b23-e3bf-4cd5-8346-d26ad5ae17aa.jpg differ diff --git a/donut_or_not/scone/a9ee2fb1-d573-47bd-8f14-d9163843b65a.png b/donut_or_not/scone/a9ee2fb1-d573-47bd-8f14-d9163843b65a.png new file mode 100644 index 0000000000000000000000000000000000000000..63e2b339d9cba6463587baf68893f6479eba9801 Binary files /dev/null and b/donut_or_not/scone/a9ee2fb1-d573-47bd-8f14-d9163843b65a.png differ diff --git a/donut_or_not/scone/aa81fa6e-1e7a-4fdc-a790-1d3a70f34ce9.jpg b/donut_or_not/scone/aa81fa6e-1e7a-4fdc-a790-1d3a70f34ce9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5f2b7288fced95feec27ab9aef6fdf71485b95c2 Binary files /dev/null and b/donut_or_not/scone/aa81fa6e-1e7a-4fdc-a790-1d3a70f34ce9.jpg differ diff --git a/donut_or_not/scone/aafe9e49-4ced-43eb-8a2e-a499771d3b94.jpg b/donut_or_not/scone/aafe9e49-4ced-43eb-8a2e-a499771d3b94.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7c3e5de4442b66a827f2eeed182ab0ab894d0386 Binary files /dev/null and b/donut_or_not/scone/aafe9e49-4ced-43eb-8a2e-a499771d3b94.jpg differ diff --git a/donut_or_not/scone/ad7059a3-d518-4077-b9a9-80c389d89e5f.jpeg b/donut_or_not/scone/ad7059a3-d518-4077-b9a9-80c389d89e5f.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..bb1efcd3ee96491e8043b2ac669a4fea8913a4f7 Binary files /dev/null and b/donut_or_not/scone/ad7059a3-d518-4077-b9a9-80c389d89e5f.jpeg differ diff --git a/donut_or_not/scone/ae4fc43e-9816-42e2-8e72-49716c26cc04.jpg b/donut_or_not/scone/ae4fc43e-9816-42e2-8e72-49716c26cc04.jpg new file mode 100644 index 0000000000000000000000000000000000000000..45f273aef2b3eba29abc28c69de9eb2f3fcc0dd9 Binary files /dev/null and b/donut_or_not/scone/ae4fc43e-9816-42e2-8e72-49716c26cc04.jpg differ diff --git a/donut_or_not/scone/aef303f3-955d-4eb2-b585-819de0e4f4d6.jpg b/donut_or_not/scone/aef303f3-955d-4eb2-b585-819de0e4f4d6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b0d7f815af01558eabfd06e9f5ce8c9eaffbcb37 Binary files /dev/null and b/donut_or_not/scone/aef303f3-955d-4eb2-b585-819de0e4f4d6.jpg differ diff --git a/donut_or_not/scone/af46972a-007c-45a2-b2ae-db1f98ed81e1.jpg b/donut_or_not/scone/af46972a-007c-45a2-b2ae-db1f98ed81e1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cdd71973b789593e39b9e431709ab66dcdab24b8 Binary files /dev/null and b/donut_or_not/scone/af46972a-007c-45a2-b2ae-db1f98ed81e1.jpg differ diff --git a/donut_or_not/scone/af97ee52-8929-462f-ae15-5f7c21182832.jpg b/donut_or_not/scone/af97ee52-8929-462f-ae15-5f7c21182832.jpg new file mode 100644 index 0000000000000000000000000000000000000000..639704392cbcdd92c590bf7519013c121be9bca6 Binary files /dev/null and b/donut_or_not/scone/af97ee52-8929-462f-ae15-5f7c21182832.jpg differ diff --git a/donut_or_not/scone/afc1d78e-b8e7-44a6-90ec-a83853e96f20.jpeg b/donut_or_not/scone/afc1d78e-b8e7-44a6-90ec-a83853e96f20.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..66e3a971bf25780e9d401f9487b2a5c3871d2056 Binary files /dev/null and b/donut_or_not/scone/afc1d78e-b8e7-44a6-90ec-a83853e96f20.jpeg differ diff --git a/donut_or_not/scone/b14ddd41-bee2-41e4-b22f-8ed42b668a1b.jpg b/donut_or_not/scone/b14ddd41-bee2-41e4-b22f-8ed42b668a1b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bac58f8a36ab7dccfef32dce54c7143095f6ce5c Binary files /dev/null and b/donut_or_not/scone/b14ddd41-bee2-41e4-b22f-8ed42b668a1b.jpg differ diff --git a/donut_or_not/scone/b44686f8-d9b7-4684-93d7-eeea3cc1353e.jpg b/donut_or_not/scone/b44686f8-d9b7-4684-93d7-eeea3cc1353e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2df96948358eec19200e9b06b66d6c8126ead80a Binary files /dev/null and b/donut_or_not/scone/b44686f8-d9b7-4684-93d7-eeea3cc1353e.jpg differ diff --git a/donut_or_not/scone/b701c19e-5987-42d9-8db4-40d0535daa9b.jpg b/donut_or_not/scone/b701c19e-5987-42d9-8db4-40d0535daa9b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..846e4e94f5ee89a3e828b2e895605c2a48906055 Binary files /dev/null and b/donut_or_not/scone/b701c19e-5987-42d9-8db4-40d0535daa9b.jpg differ diff --git a/donut_or_not/scone/b839e7bd-4cda-4672-90fa-fa43f604d496.jpg b/donut_or_not/scone/b839e7bd-4cda-4672-90fa-fa43f604d496.jpg new file mode 100644 index 0000000000000000000000000000000000000000..559d49177636749bb6507786eb88914f3c4bfe8f Binary files /dev/null and b/donut_or_not/scone/b839e7bd-4cda-4672-90fa-fa43f604d496.jpg differ diff --git a/donut_or_not/scone/b8ce9cb1-b8a6-441d-aef1-f6a5c15a2962.jpg b/donut_or_not/scone/b8ce9cb1-b8a6-441d-aef1-f6a5c15a2962.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c8c77a5ae13753c0348753751817c23d3e0d70d1 Binary files /dev/null and b/donut_or_not/scone/b8ce9cb1-b8a6-441d-aef1-f6a5c15a2962.jpg differ diff --git a/donut_or_not/scone/ba7e25f6-79fd-4d2e-8ff7-16d9b4cf2386.jpg b/donut_or_not/scone/ba7e25f6-79fd-4d2e-8ff7-16d9b4cf2386.jpg new file mode 100644 index 0000000000000000000000000000000000000000..40974412b56cbf79cded5a9809a39d2d2822bd27 Binary files /dev/null and b/donut_or_not/scone/ba7e25f6-79fd-4d2e-8ff7-16d9b4cf2386.jpg differ diff --git a/donut_or_not/scone/bbc2870f-b726-44f1-b825-27417488a6a8.jpg b/donut_or_not/scone/bbc2870f-b726-44f1-b825-27417488a6a8.jpg new file mode 100644 index 0000000000000000000000000000000000000000..20f527d637f3a69f89d72c03e6516de070f3efcb Binary files /dev/null and b/donut_or_not/scone/bbc2870f-b726-44f1-b825-27417488a6a8.jpg differ diff --git a/donut_or_not/scone/bbc54119-663f-477f-b8ac-2ffcc0a0914b.jpg b/donut_or_not/scone/bbc54119-663f-477f-b8ac-2ffcc0a0914b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..61e8d225f4d1186f518b350c0ab255b4aaad8d6f Binary files /dev/null and b/donut_or_not/scone/bbc54119-663f-477f-b8ac-2ffcc0a0914b.jpg differ diff --git a/donut_or_not/scone/bbeb7682-cf1d-4ad6-b632-5665b83d6616.jpg b/donut_or_not/scone/bbeb7682-cf1d-4ad6-b632-5665b83d6616.jpg new file mode 100644 index 0000000000000000000000000000000000000000..02bd64f631e73eaebfe5ace0a1d54552a3e86182 Binary files /dev/null and b/donut_or_not/scone/bbeb7682-cf1d-4ad6-b632-5665b83d6616.jpg differ diff --git a/donut_or_not/scone/bbf40269-1f89-482d-a105-6b1fd00ed578.jpg b/donut_or_not/scone/bbf40269-1f89-482d-a105-6b1fd00ed578.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5f2b7288fced95feec27ab9aef6fdf71485b95c2 Binary files /dev/null and b/donut_or_not/scone/bbf40269-1f89-482d-a105-6b1fd00ed578.jpg differ diff --git a/donut_or_not/scone/bc199c17-b90e-4dc9-9fdd-5c3225563e7d.jpg b/donut_or_not/scone/bc199c17-b90e-4dc9-9fdd-5c3225563e7d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..76781e8a8a50cd0836cba01ae980865596a1ab05 Binary files /dev/null and b/donut_or_not/scone/bc199c17-b90e-4dc9-9fdd-5c3225563e7d.jpg differ diff --git a/donut_or_not/scone/bf52dff4-c2d2-492f-b331-44c992222460.jpg b/donut_or_not/scone/bf52dff4-c2d2-492f-b331-44c992222460.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c651c7d68dcc291645db327d33cbb8b7edcf7ea4 Binary files /dev/null and b/donut_or_not/scone/bf52dff4-c2d2-492f-b331-44c992222460.jpg differ diff --git a/donut_or_not/scone/c3a243fa-8659-4c9b-883c-57e3dcf40366.jpg b/donut_or_not/scone/c3a243fa-8659-4c9b-883c-57e3dcf40366.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bb1064bf35e5c94313e944f3c43a4e2ab89c57ee Binary files /dev/null and b/donut_or_not/scone/c3a243fa-8659-4c9b-883c-57e3dcf40366.jpg differ diff --git a/donut_or_not/scone/c51069e4-2a67-4f48-8609-20c49e3f2788.jpg b/donut_or_not/scone/c51069e4-2a67-4f48-8609-20c49e3f2788.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5acc99ad72beb141f822f0b3f4f7e61e6e9e58e5 Binary files /dev/null and b/donut_or_not/scone/c51069e4-2a67-4f48-8609-20c49e3f2788.jpg differ diff --git a/donut_or_not/scone/cc777c70-aab9-4839-b565-1551b7db4dbb.jpg b/donut_or_not/scone/cc777c70-aab9-4839-b565-1551b7db4dbb.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9900878b628e3b422202834360bebd034b304cbb Binary files /dev/null and b/donut_or_not/scone/cc777c70-aab9-4839-b565-1551b7db4dbb.jpg differ diff --git a/donut_or_not/scone/cce0a0c2-d238-49a7-8f21-a49bdc73688b.jpg b/donut_or_not/scone/cce0a0c2-d238-49a7-8f21-a49bdc73688b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..26afe81259582fafb223d597770e36393561b35b Binary files /dev/null and b/donut_or_not/scone/cce0a0c2-d238-49a7-8f21-a49bdc73688b.jpg differ diff --git a/donut_or_not/scone/ce8bc0db-0f4c-4b3c-968e-943b153311e3.jpg b/donut_or_not/scone/ce8bc0db-0f4c-4b3c-968e-943b153311e3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ffdae78b4ba6a04d30efe59c6a32dc0a8f3b1c4b Binary files /dev/null and b/donut_or_not/scone/ce8bc0db-0f4c-4b3c-968e-943b153311e3.jpg differ diff --git a/donut_or_not/scone/ceec659d-dffd-42e2-81e7-2d0f8f4bc6d1.jpg b/donut_or_not/scone/ceec659d-dffd-42e2-81e7-2d0f8f4bc6d1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..846e4e94f5ee89a3e828b2e895605c2a48906055 Binary files /dev/null and b/donut_or_not/scone/ceec659d-dffd-42e2-81e7-2d0f8f4bc6d1.jpg differ diff --git a/donut_or_not/scone/d25e70f9-cc6a-4539-9713-bbddb0c1e54c.jpg b/donut_or_not/scone/d25e70f9-cc6a-4539-9713-bbddb0c1e54c.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c076b46a470f279768ad875ce6815d42dc98a84f Binary files /dev/null and b/donut_or_not/scone/d25e70f9-cc6a-4539-9713-bbddb0c1e54c.jpg differ diff --git a/donut_or_not/scone/d3027b7b-710e-4043-b890-af9edbd5457e.jpg b/donut_or_not/scone/d3027b7b-710e-4043-b890-af9edbd5457e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cba793a4a60a67ae29748a0de1a347a9b57ae9b Binary files /dev/null and b/donut_or_not/scone/d3027b7b-710e-4043-b890-af9edbd5457e.jpg differ diff --git a/donut_or_not/scone/d3e42c06-68f8-4354-8fbb-b49073af43fa.jpg b/donut_or_not/scone/d3e42c06-68f8-4354-8fbb-b49073af43fa.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4feea2ae00bd5c803302ca9645f1f7d9b63f5ad4 Binary files /dev/null and b/donut_or_not/scone/d3e42c06-68f8-4354-8fbb-b49073af43fa.jpg differ diff --git a/donut_or_not/scone/d45c676e-1efd-4f21-9aed-569113350c67.jpg b/donut_or_not/scone/d45c676e-1efd-4f21-9aed-569113350c67.jpg new file mode 100644 index 0000000000000000000000000000000000000000..db1b902f241803c04cce78153a2bcc15ed21874c Binary files /dev/null and b/donut_or_not/scone/d45c676e-1efd-4f21-9aed-569113350c67.jpg differ diff --git a/donut_or_not/scone/d708fbd5-59c6-48ba-a570-8c0430f53848.jpg b/donut_or_not/scone/d708fbd5-59c6-48ba-a570-8c0430f53848.jpg new file mode 100644 index 0000000000000000000000000000000000000000..653915154c6e4f29cf9a53a0ce7f9e67de47bb19 Binary files /dev/null and b/donut_or_not/scone/d708fbd5-59c6-48ba-a570-8c0430f53848.jpg differ diff --git a/donut_or_not/scone/d8a337d8-5ca7-4d03-8e4f-0c2f311d981e.jpg b/donut_or_not/scone/d8a337d8-5ca7-4d03-8e4f-0c2f311d981e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d318a6199bb387b38eabe8c98b18f137090399c4 Binary files /dev/null and b/donut_or_not/scone/d8a337d8-5ca7-4d03-8e4f-0c2f311d981e.jpg differ diff --git a/donut_or_not/scone/d8fbb36b-1595-4be7-b677-4ec2b0ed5e91.jpg b/donut_or_not/scone/d8fbb36b-1595-4be7-b677-4ec2b0ed5e91.jpg new file mode 100644 index 0000000000000000000000000000000000000000..60968d416eda7a711681a249ac7b94f55dbb84f7 Binary files /dev/null and b/donut_or_not/scone/d8fbb36b-1595-4be7-b677-4ec2b0ed5e91.jpg differ diff --git a/donut_or_not/scone/d971772e-ed03-442f-a063-50d569190be3.jpg b/donut_or_not/scone/d971772e-ed03-442f-a063-50d569190be3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..93d8a6a0387c820379362f09c6c907a42dc02d34 Binary files /dev/null and b/donut_or_not/scone/d971772e-ed03-442f-a063-50d569190be3.jpg differ diff --git a/donut_or_not/scone/dee79c7f-af64-47bb-8299-832d9d65df76.jpg b/donut_or_not/scone/dee79c7f-af64-47bb-8299-832d9d65df76.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8dd75ad5258e4b4f5dc810245f6927b0ab872d7f Binary files /dev/null and b/donut_or_not/scone/dee79c7f-af64-47bb-8299-832d9d65df76.jpg differ diff --git a/donut_or_not/scone/df169887-eb81-421b-a4c2-e339cc275099.jpg b/donut_or_not/scone/df169887-eb81-421b-a4c2-e339cc275099.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7756e1c00f7a63ae012dbb5f1793cb54cdbf0cdb Binary files /dev/null and b/donut_or_not/scone/df169887-eb81-421b-a4c2-e339cc275099.jpg differ diff --git a/donut_or_not/scone/e089b704-a8bb-41bc-a0a5-1b8f144b3736.jpg b/donut_or_not/scone/e089b704-a8bb-41bc-a0a5-1b8f144b3736.jpg new file mode 100644 index 0000000000000000000000000000000000000000..71849123084190450df4ff5b09de608b925f3acb Binary files /dev/null and b/donut_or_not/scone/e089b704-a8bb-41bc-a0a5-1b8f144b3736.jpg differ diff --git a/donut_or_not/scone/e3ee087e-137e-4de0-96f7-5d85042d40eb.jpg b/donut_or_not/scone/e3ee087e-137e-4de0-96f7-5d85042d40eb.jpg new file mode 100644 index 0000000000000000000000000000000000000000..03478b9df8e452790ac1e3ec7e1ce9b842aa7cdc Binary files /dev/null and b/donut_or_not/scone/e3ee087e-137e-4de0-96f7-5d85042d40eb.jpg differ diff --git a/donut_or_not/scone/e6460bff-4fde-4e5d-a539-645a3ba82a05.jpg b/donut_or_not/scone/e6460bff-4fde-4e5d-a539-645a3ba82a05.jpg new file mode 100644 index 0000000000000000000000000000000000000000..23811c992f69f99b390aac6af2677e16457abe39 Binary files /dev/null and b/donut_or_not/scone/e6460bff-4fde-4e5d-a539-645a3ba82a05.jpg differ diff --git a/donut_or_not/scone/e6548c9d-e988-42e6-9450-b67f5ea54808.jpg b/donut_or_not/scone/e6548c9d-e988-42e6-9450-b67f5ea54808.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cdc764b44e567b47f3b4d26b917b68e49b3b7cea Binary files /dev/null and b/donut_or_not/scone/e6548c9d-e988-42e6-9450-b67f5ea54808.jpg differ diff --git a/donut_or_not/scone/e83c0e66-a1a7-416a-843d-c1848d8a5f4f.jpg b/donut_or_not/scone/e83c0e66-a1a7-416a-843d-c1848d8a5f4f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c9974f9dd319c3f692b3fb71bd43a23e2ca0c38 Binary files /dev/null and b/donut_or_not/scone/e83c0e66-a1a7-416a-843d-c1848d8a5f4f.jpg differ diff --git a/donut_or_not/scone/e8d0328c-6bde-47dc-afd8-6f83e45e9afc.jpg b/donut_or_not/scone/e8d0328c-6bde-47dc-afd8-6f83e45e9afc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7756e1c00f7a63ae012dbb5f1793cb54cdbf0cdb Binary files /dev/null and b/donut_or_not/scone/e8d0328c-6bde-47dc-afd8-6f83e45e9afc.jpg differ diff --git a/donut_or_not/scone/e9c57d92-bd10-4d3c-a0b6-8263422df9a3.png b/donut_or_not/scone/e9c57d92-bd10-4d3c-a0b6-8263422df9a3.png new file mode 100644 index 0000000000000000000000000000000000000000..936e732ec7a88ea5564e491bf74ca59502e95bf7 Binary files /dev/null and b/donut_or_not/scone/e9c57d92-bd10-4d3c-a0b6-8263422df9a3.png differ diff --git a/donut_or_not/scone/edc42614-0e05-4e72-b13a-e6b7f9658c0c.jpg b/donut_or_not/scone/edc42614-0e05-4e72-b13a-e6b7f9658c0c.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0bee326f5018181998839c6570ffcbdd1e1b180e Binary files /dev/null and b/donut_or_not/scone/edc42614-0e05-4e72-b13a-e6b7f9658c0c.jpg differ diff --git a/donut_or_not/scone/ee60ad39-47af-4946-9c79-ad4027700e8a.jpg b/donut_or_not/scone/ee60ad39-47af-4946-9c79-ad4027700e8a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f96ee29c9f07975460912e0debb70eb421cc216b Binary files /dev/null and b/donut_or_not/scone/ee60ad39-47af-4946-9c79-ad4027700e8a.jpg differ diff --git a/donut_or_not/scone/ef351786-c762-464c-9839-3285341cdd96.png b/donut_or_not/scone/ef351786-c762-464c-9839-3285341cdd96.png new file mode 100644 index 0000000000000000000000000000000000000000..214d782db3a629df113186a6e42d9e14f0460fd2 Binary files /dev/null and b/donut_or_not/scone/ef351786-c762-464c-9839-3285341cdd96.png differ diff --git a/donut_or_not/scone/effbdec2-a5c2-4959-b3eb-e135733d195e.jpg b/donut_or_not/scone/effbdec2-a5c2-4959-b3eb-e135733d195e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cdc764b44e567b47f3b4d26b917b68e49b3b7cea Binary files /dev/null and b/donut_or_not/scone/effbdec2-a5c2-4959-b3eb-e135733d195e.jpg differ diff --git a/donut_or_not/scone/f02418ad-38bb-42d3-849f-af64f819ae03.jpg b/donut_or_not/scone/f02418ad-38bb-42d3-849f-af64f819ae03.jpg new file mode 100644 index 0000000000000000000000000000000000000000..28d791ea29be19d7fcbadd89db559b020e473045 Binary files /dev/null and b/donut_or_not/scone/f02418ad-38bb-42d3-849f-af64f819ae03.jpg differ diff --git a/donut_or_not/scone/f3ba8162-b872-4a4c-88a1-a0cac01b5bde.jpg b/donut_or_not/scone/f3ba8162-b872-4a4c-88a1-a0cac01b5bde.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e11fffe5b702d988b93fd27b04c5468350f58570 Binary files /dev/null and b/donut_or_not/scone/f3ba8162-b872-4a4c-88a1-a0cac01b5bde.jpg differ diff --git a/donut_or_not/scone/f4fc35e4-06c8-4bdf-8475-1bea425cc94f.jpg b/donut_or_not/scone/f4fc35e4-06c8-4bdf-8475-1bea425cc94f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..65cb50a75c60921a7f695790b4f4fce4d498b1b3 Binary files /dev/null and b/donut_or_not/scone/f4fc35e4-06c8-4bdf-8475-1bea425cc94f.jpg differ diff --git a/donut_or_not/scone/f68306e6-190b-4586-943a-9a5aebc7c930.jpg b/donut_or_not/scone/f68306e6-190b-4586-943a-9a5aebc7c930.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6269c8e7173d075c22c4499b5deefe3895faeacf Binary files /dev/null and b/donut_or_not/scone/f68306e6-190b-4586-943a-9a5aebc7c930.jpg differ diff --git a/donut_or_not/scone/f78ac17a-e846-42ba-befc-628865d82dbb.jpg b/donut_or_not/scone/f78ac17a-e846-42ba-befc-628865d82dbb.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2d0f3ac0f0774e484a16e651719c7388804c9872 Binary files /dev/null and b/donut_or_not/scone/f78ac17a-e846-42ba-befc-628865d82dbb.jpg differ diff --git a/donut_or_not/scone/fcf5dda8-011c-44d8-9562-320f7a1425e0.jpg b/donut_or_not/scone/fcf5dda8-011c-44d8-9562-320f7a1425e0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..55803c4268d859a90996d1c9d39e18513eafb0c9 Binary files /dev/null and b/donut_or_not/scone/fcf5dda8-011c-44d8-9562-320f7a1425e0.jpg differ diff --git a/donut_or_not/scone/fd1b6252-3017-4e2c-a77b-4c267e67a352.jpg b/donut_or_not/scone/fd1b6252-3017-4e2c-a77b-4c267e67a352.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e09ac31f3930f8f28a216e18291d87f06f4dd64 Binary files /dev/null and b/donut_or_not/scone/fd1b6252-3017-4e2c-a77b-4c267e67a352.jpg differ diff --git a/donut_or_not/scone/fea8877c-812a-4fd6-8252-cc32faf3f53b.png b/donut_or_not/scone/fea8877c-812a-4fd6-8252-cc32faf3f53b.png new file mode 100644 index 0000000000000000000000000000000000000000..52dc5f4b51d31ab634d56a6cede8bfc78549f150 Binary files /dev/null and b/donut_or_not/scone/fea8877c-812a-4fd6-8252-cc32faf3f53b.png differ diff --git a/model.ipynb b/model.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..70cf4d955a1c2ec4500e14eb4bc707d4bce6478e --- /dev/null +++ b/model.ipynb @@ -0,0 +1,571 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 7, + "id": "87d59ec1", + "metadata": {}, + "outputs": [], + "source": [ + "from duckduckgo_search import ddg_images\n", + "from fastcore.all import *\n", + "def search_images(term, max_images=30):\n", + " print(f\"Searching for '{term}'\")\n", + " return L(ddg_images(term, max_results=max_images)).itemgot('image')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6ac770e8", + "metadata": {}, + "outputs": [], + "source": [ + "from fastdownload import download_url\n", + "#from fastai.vision.all import *" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4e36b9c9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching for 'donut photo'\n", + "Searching for 'donut sun photo'\n", + "Searching for 'donut shade photo'\n", + "Searching for 'scone photo'\n", + "Searching for 'scone sun photo'\n", + "Searching for 'scone shade photo'\n" + ] + } + ], + "source": [ + "searches = 'donut','scone'\n", + "path = Path('donut_or_not')\n", + "from time import sleep\n", + "\n", + "for o in searches:\n", + " dest = (path/o)\n", + " dest.mkdir(exist_ok=True, parents=True)\n", + " download_images(dest, urls=search_images(f'{o} photo'))\n", + " sleep(10) # Pause between searches to avoid over-loading server\n", + " download_images(dest, urls=search_images(f'{o} sun photo'))\n", + " sleep(10)\n", + " download_images(dest, urls=search_images(f'{o} shade photo'))\n", + " sleep(10)\n", + " resize_images(path/o, max_size=400, dest=path/o)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d51b4218", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "failed = verify_images(get_image_files(path))\n", + "failed\n", + "failed.map(Path.unlink)\n", + "len(failed)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0cfa1c6d", + "metadata": {}, + "outputs": [], + "source": [ + "dls = DataBlock(\n", + " blocks=(ImageBlock, CategoryBlock), \n", + " get_items=get_image_files, \n", + " splitter=RandomSplitter(valid_pct=0.2, seed=42),\n", + " get_y=parent_label,\n", + " item_tfms=[Resize(192, method='squish')]\n", + ").dataloaders(path, bs=32)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f6828f44", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.\n", + " warnings.warn(\n", + "/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.\n", + " warnings.warn(msg)\n", + "Downloading: \"https://download.pytorch.org/models/resnet18-f37072fd.pth\" to /home/yigewu/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0d149e2258a546869d7c7c9a06442933", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0.00/44.7M [00:00\n", + " /* Turns off some styling */\n", + " progress {\n", + " /* gets rid of default border in Firefox and Opera. */\n", + " border: none;\n", + " /* Needs to be in here for Safari polyfill so background images work as expected. */\n", + " background-size: auto;\n", + " }\n", + " progress:not([value]), progress:not([value])::-webkit-progress-bar {\n", + " background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n", + " }\n", + " .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", + " background: #F44336;\n", + " }\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epochtrain_lossvalid_losserror_ratetime
01.1052290.3408210.17857100:23
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epochtrain_lossvalid_losserror_ratetime
00.2916100.0794220.03571400:31
10.1995870.0404300.01785700:34
20.1410430.0374860.00000000:32
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "learn = vision_learner(dls, resnet18, metrics=error_rate)\n", + "learn.fine_tune(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "b80d9503", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "16920438763447d7babcf088ec67ce8e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(Dropdown(options=('donut', 'scone'), value='donut'), Dropdown(options=('Train', 'Valid'), value…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from fastai.vision.widgets import *\n", + "cleaner = ImageClassifierCleaner(learn)\n", + "cleaner" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f4f497c3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epochtrain_lossvalid_losserror_ratetime
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "ename": "FileNotFoundError", + "evalue": "Caught FileNotFoundError in DataLoader worker process 0.\nOriginal Traceback (most recent call last):\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/utils/data/_utils/worker.py\", line 302, in _worker_loop\n data = fetcher.fetch(index)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py\", line 39, in fetch\n data = next(self.dataset_iter)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/load.py\", line 140, in create_batches\n yield from map(self.do_batch, self.chunkify(res))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/basics.py\", line 230, in chunked\n res = list(itertools.islice(it, chunk_sz))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/load.py\", line 155, in do_item\n try: return self.after_item(self.create_item(s))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/load.py\", line 162, in create_item\n if self.indexed: return self.dataset[s or 0]\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 455, in __getitem__\n res = tuple([tl[it] for tl in self.tls])\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 455, in \n res = tuple([tl[it] for tl in self.tls])\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 414, in __getitem__\n return self._after_item(res) if is_indexer(idx) else res.map(self._after_item)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 374, in _after_item\n def _after_item(self, o): return self.tfms(o)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 208, in __call__\n def __call__(self, o): return compose_tfms(o, tfms=self.fs, split_idx=self.split_idx)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 158, in compose_tfms\n x = f(x, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 81, in __call__\n def __call__(self, x, **kwargs): return self._call('encodes', x, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 91, in _call\n return self._do_call(getattr(self, fn), x, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 97, in _do_call\n return retain_type(f(x, **kwargs), x, ret)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/dispatch.py\", line 120, in __call__\n return f(*args, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/vision/core.py\", line 123, in create\n return cls(load_image(fn, **merge(cls._open_args, kwargs)))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/vision/core.py\", line 98, in load_image\n im = Image.open(fn)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/PIL/Image.py\", line 3092, in open\n fp = builtins.open(filename, \"rb\")\nFileNotFoundError: [Errno 2] No such file or directory: '/diskmnt/Projects/Users/yigewu/Deep_Learning2022/pet_test/donut_or_not/scone/24f75cc7-6e8a-44e3-80bc-8c5132d2ec30.jpg'\n", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [15], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m cleaner\u001b[38;5;241m.\u001b[39mdelete(): cleaner\u001b[38;5;241m.\u001b[39mfns[idx]\u001b[38;5;241m.\u001b[39munlink()\n\u001b[0;32m----> 2\u001b[0m \u001b[43mlearn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfine_tune\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/callback/schedule.py:165\u001b[0m, in \u001b[0;36mfine_tune\u001b[0;34m(self, epochs, base_lr, freeze_epochs, lr_mult, pct_start, div, **kwargs)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFine tune with `Learner.freeze` for `freeze_epochs`, then with `Learner.unfreeze` for `epochs`, using discriminative LR.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfreeze()\n\u001b[0;32m--> 165\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_one_cycle\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfreeze_epochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mslice\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mbase_lr\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpct_start\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.99\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m base_lr \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m2\u001b[39m\n\u001b[1;32m 167\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munfreeze()\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/callback/schedule.py:119\u001b[0m, in \u001b[0;36mfit_one_cycle\u001b[0;34m(self, n_epoch, lr_max, div, div_final, pct_start, wd, moms, cbs, reset_opt, start_epoch)\u001b[0m\n\u001b[1;32m 116\u001b[0m lr_max \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marray([h[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlr\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m h \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mopt\u001b[38;5;241m.\u001b[39mhypers])\n\u001b[1;32m 117\u001b[0m scheds \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlr\u001b[39m\u001b[38;5;124m'\u001b[39m: combined_cos(pct_start, lr_max\u001b[38;5;241m/\u001b[39mdiv, lr_max, lr_max\u001b[38;5;241m/\u001b[39mdiv_final),\n\u001b[1;32m 118\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmom\u001b[39m\u001b[38;5;124m'\u001b[39m: combined_cos(pct_start, \u001b[38;5;241m*\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmoms \u001b[38;5;28;01mif\u001b[39;00m moms \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m moms))}\n\u001b[0;32m--> 119\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_epoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcbs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mParamScheduler\u001b[49m\u001b[43m(\u001b[49m\u001b[43mscheds\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43mL\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcbs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreset_opt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreset_opt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwd\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwd\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart_epoch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart_epoch\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:256\u001b[0m, in \u001b[0;36mLearner.fit\u001b[0;34m(self, n_epoch, lr, wd, cbs, reset_opt, start_epoch)\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mopt\u001b[38;5;241m.\u001b[39mset_hypers(lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlr \u001b[38;5;28;01mif\u001b[39;00m lr \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m lr)\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epoch \u001b[38;5;241m=\u001b[39m n_epoch\n\u001b[0;32m--> 256\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_with_events\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_fit\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfit\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCancelFitException\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_end_cleanup\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:193\u001b[0m, in \u001b[0;36mLearner._with_events\u001b[0;34m(self, f, event_type, ex, final)\u001b[0m\n\u001b[1;32m 192\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_with_events\u001b[39m(\u001b[38;5;28mself\u001b[39m, f, event_type, ex, final\u001b[38;5;241m=\u001b[39mnoop):\n\u001b[0;32m--> 193\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbefore_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ex: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_cancel_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); final()\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:245\u001b[0m, in \u001b[0;36mLearner._do_fit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epoch):\n\u001b[1;32m 244\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mepoch\u001b[38;5;241m=\u001b[39mepoch\n\u001b[0;32m--> 245\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_with_events\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_epoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mepoch\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCancelEpochException\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:193\u001b[0m, in \u001b[0;36mLearner._with_events\u001b[0;34m(self, f, event_type, ex, final)\u001b[0m\n\u001b[1;32m 192\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_with_events\u001b[39m(\u001b[38;5;28mself\u001b[39m, f, event_type, ex, final\u001b[38;5;241m=\u001b[39mnoop):\n\u001b[0;32m--> 193\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbefore_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ex: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_cancel_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); final()\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:240\u001b[0m, in \u001b[0;36mLearner._do_epoch\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 238\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_do_epoch\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_do_epoch_train()\n\u001b[0;32m--> 240\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_epoch_validate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:236\u001b[0m, in \u001b[0;36mLearner._do_epoch_validate\u001b[0;34m(self, ds_idx, dl)\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dl \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m: dl \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdls[ds_idx]\n\u001b[1;32m 235\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdl \u001b[38;5;241m=\u001b[39m dl\n\u001b[0;32m--> 236\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad(): \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_with_events\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mall_batches\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mvalidate\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCancelValidException\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:193\u001b[0m, in \u001b[0;36mLearner._with_events\u001b[0;34m(self, f, event_type, ex, final)\u001b[0m\n\u001b[1;32m 192\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_with_events\u001b[39m(\u001b[38;5;28mself\u001b[39m, f, event_type, ex, final\u001b[38;5;241m=\u001b[39mnoop):\n\u001b[0;32m--> 193\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbefore_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ex: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_cancel_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); final()\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/learner.py:199\u001b[0m, in \u001b[0;36mLearner.all_batches\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mall_batches\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_iter \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdl)\n\u001b[0;32m--> 199\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m o \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdl): \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mone_batch(\u001b[38;5;241m*\u001b[39mo)\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/load.py:129\u001b[0m, in \u001b[0;36mDataLoader.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbefore_iter()\n\u001b[1;32m 128\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__idxs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_idxs() \u001b[38;5;66;03m# called in context of main process (not workers/subprocesses)\u001b[39;00m\n\u001b[0;32m--> 129\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m _loaders[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfake_l\u001b[38;5;241m.\u001b[39mnum_workers\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m0\u001b[39m](\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfake_l):\n\u001b[1;32m 130\u001b[0m \u001b[38;5;66;03m# pin_memory causes tuples to be converted to lists, so convert them back to tuples\u001b[39;00m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpin_memory \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mtype\u001b[39m(b) \u001b[38;5;241m==\u001b[39m \u001b[38;5;28mlist\u001b[39m: b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mtuple\u001b[39m(b)\n\u001b[1;32m 132\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m: b \u001b[38;5;241m=\u001b[39m to_device(b, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice)\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/utils/data/dataloader.py:681\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 678\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampler_iter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 679\u001b[0m \u001b[38;5;66;03m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[1;32m 680\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset() \u001b[38;5;66;03m# type: ignore[call-arg]\u001b[39;00m\n\u001b[0;32m--> 681\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_next_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 682\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 683\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dataset_kind \u001b[38;5;241m==\u001b[39m _DatasetKind\u001b[38;5;241m.\u001b[39mIterable \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 684\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 685\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called:\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1376\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1374\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1375\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_task_info[idx]\n\u001b[0;32m-> 1376\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_process_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1402\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._process_data\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m 1400\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_try_put_index()\n\u001b[1;32m 1401\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data, ExceptionWrapper):\n\u001b[0;32m-> 1402\u001b[0m \u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreraise\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1403\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data\n", + "File \u001b[0;32m/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/_utils.py:461\u001b[0m, in \u001b[0;36mExceptionWrapper.reraise\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 458\u001b[0m \u001b[38;5;66;03m# If the exception takes multiple arguments, don't try to\u001b[39;00m\n\u001b[1;32m 459\u001b[0m \u001b[38;5;66;03m# instantiate since we don't know how to\u001b[39;00m\n\u001b[1;32m 460\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(msg) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28mNone\u001b[39m\n\u001b[0;32m--> 461\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exception\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: Caught FileNotFoundError in DataLoader worker process 0.\nOriginal Traceback (most recent call last):\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/utils/data/_utils/worker.py\", line 302, in _worker_loop\n data = fetcher.fetch(index)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py\", line 39, in fetch\n data = next(self.dataset_iter)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/load.py\", line 140, in create_batches\n yield from map(self.do_batch, self.chunkify(res))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/basics.py\", line 230, in chunked\n res = list(itertools.islice(it, chunk_sz))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/load.py\", line 155, in do_item\n try: return self.after_item(self.create_item(s))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/load.py\", line 162, in create_item\n if self.indexed: return self.dataset[s or 0]\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 455, in __getitem__\n res = tuple([tl[it] for tl in self.tls])\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 455, in \n res = tuple([tl[it] for tl in self.tls])\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 414, in __getitem__\n return self._after_item(res) if is_indexer(idx) else res.map(self._after_item)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/data/core.py\", line 374, in _after_item\n def _after_item(self, o): return self.tfms(o)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 208, in __call__\n def __call__(self, o): return compose_tfms(o, tfms=self.fs, split_idx=self.split_idx)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 158, in compose_tfms\n x = f(x, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 81, in __call__\n def __call__(self, x, **kwargs): return self._call('encodes', x, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 91, in _call\n return self._do_call(getattr(self, fn), x, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/transform.py\", line 97, in _do_call\n return retain_type(f(x, **kwargs), x, ret)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastcore/dispatch.py\", line 120, in __call__\n return f(*args, **kwargs)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/vision/core.py\", line 123, in create\n return cls(load_image(fn, **merge(cls._open_args, kwargs)))\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/fastai/vision/core.py\", line 98, in load_image\n im = Image.open(fn)\n File \"/diskmnt/Projects/Users/yigewu/tools/miniconda3/envs/deep_learning/lib/python3.10/site-packages/PIL/Image.py\", line 3092, in open\n fp = builtins.open(filename, \"rb\")\nFileNotFoundError: [Errno 2] No such file or directory: '/diskmnt/Projects/Users/yigewu/Deep_Learning2022/pet_test/donut_or_not/scone/24f75cc7-6e8a-44e3-80bc-8c5132d2ec30.jpg'\n" + ] + } + ], + "source": [ + "for idx in cleaner.delete(): cleaner.fns[idx].unlink()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6cf656c1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This is a: donut.\n", + "Probability it's a donut: 0.9999\n" + ] + } + ], + "source": [ + "is_donut,_,probs = learn.predict(PILImage.create('donut.jpg'))\n", + "print(f\"This is a: {is_donut}.\")\n", + "print(f\"Probability it's a donut: {probs[0]:.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "c6e7eb32", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This is a: scone.\n", + "Probability it's a donut: 0.0000\n" + ] + } + ], + "source": [ + "is_donut,_,probs = learn.predict(PILImage.create('scone.jpg'))\n", + "print(f\"This is a: {is_donut}.\")\n", + "print(f\"Probability it's a donut: {probs[0]:.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "f6e944f8", + "metadata": {}, + "outputs": [], + "source": [ + "learn.export('donut_model2.pkl')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scone.jpg b/scone.jpg new file mode 100644 index 0000000000000000000000000000000000000000..14b7d830fec0f6835f5ab006fe43f27ec0996936 Binary files /dev/null and b/scone.jpg differ