import torch from torch import nn __all__ = ["iresnet18", "iresnet34", "iresnet50", "iresnet100", "iresnet200"] def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class IBasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, ): super(IBasicBlock, self).__init__() if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,) self.conv1 = conv3x3(inplanes, planes) self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,) self.prelu = nn.PReLU(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.prelu(out) out = self.conv2(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity return out class IResNet(nn.Module): def __init__( self, block, layers, dropout=0, num_features=512, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False, fc_scale = 7 * 7, ): super(IResNet, self).__init__() self.fp16 = fp16 self.inplanes = 64 self.dilation = 1 self.fc_scale = fc_scale if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d( 3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False ) self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) self.prelu = nn.PReLU(self.inplanes) self.layer1 = self._make_layer(block, 64, layers[0], stride=2) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] ) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] ) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2] ) self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,) self.dropout = nn.Dropout(p=dropout, inplace=True) self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) self.features = nn.BatchNorm1d(num_features, eps=1e-05) nn.init.constant_(self.features.weight, 1.0) self.features.weight.requires_grad = False for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, 0, 0.1) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, IBasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion, eps=1e-05,), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, ) ) return nn.Sequential(*layers) def forward(self, x): with torch.cuda.amp.autocast(self.fp16): x = self.conv1(x) x = self.bn1(x) x = self.prelu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.bn2(x) # print(x.shape) x = torch.flatten(x, 1) x = self.dropout(x) x = self.fc(x.float() if self.fp16 else x) x = self.features(x) return x def _iresnet(arch, block, layers, pretrained, progress, **kwargs): model = IResNet(block, layers, **kwargs) if pretrained: model_dir = { 'iresnet18': './weights/r18-backbone.pth', 'iresnet34': './weights/r34-backbone.pth', 'iresnet50': './weights/r50-backbone.pth', 'iresnet100': './weights/r100-backbone.pth', } pre_trained_weights = torch.load(model_dir[arch], map_location=torch.device('cpu')) tmp_dict = {} for key in pre_trained_weights: # if 'features' in key or 'fc' in key: # print('skip %s' % key) # continue tmp_dict[key] = pre_trained_weights[key] # get 'iresnet' model layers which don't exist in 'arcxx' and insert to tmp model_dict = model.state_dict() for key in model_dict: if key not in tmp_dict: tmp_dict[key] = model_dict[key] model.load_state_dict(tmp_dict, strict=False) print("load pre-trained iresnet from %s" % model_dir[arch]) return model def iresnet18(pretrained=False, progress=True, **kwargs): return _iresnet( "iresnet18", IBasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs ) def iresnet34(pretrained=False, progress=True, **kwargs): return _iresnet( "iresnet34", IBasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs ) def iresnet50(pretrained=False, progress=True, **kwargs): return _iresnet( "iresnet50", IBasicBlock, [3, 4, 14, 3], pretrained, progress, **kwargs ) def iresnet100(pretrained=False, progress=True, **kwargs): return _iresnet( "iresnet100", IBasicBlock, [3, 13, 30, 3], pretrained, progress, **kwargs ) def iresnet200(pretrained=False, progress=True, **kwargs): return _iresnet( "iresnet200", IBasicBlock, [6, 26, 60, 6], pretrained, progress, **kwargs ) @torch.no_grad() def identification(folder: str = './images', target_idx: int = 0): import os from PIL import Image import torch import torchvision.transforms as transforms import torch.nn.functional as F import kornia import numpy as np os.makedirs('crop', exist_ok=True) img_list = os.listdir(folder) img_list.sort() n = len(img_list) trans = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), # transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) trans_matrix = torch.tensor( [[[1.07695457, -0.03625215, -1.56352194], [0.03625215, 1.07695457, -5.32134629]]], requires_grad=False).float().cuda() fid_model = iresnet50(pretrained=True).cuda().eval() def save_tensor_to_img(tensor: torch.Tensor, path: str, scale=255): tensor = tensor.permute(0, 2, 3, 1)[0] # in [0,1] tensor = tensor.clamp(0, 1) tensor = tensor * scale tensor_np = tensor.cpu().numpy().astype(np.uint8) if tensor_np.shape[-1] == 1: # channel dim tensor_np = tensor_np.repeat(3, axis=-1) tensor_img = Image.fromarray(tensor_np) tensor_img.save(path) feats = torch.zeros((n, 512), dtype=torch.float32).cuda() for idx, img_path in enumerate(img_list): img_pil = Image.open(os.path.join(folder, img_path)).convert('RGB') img_tensor = trans(img_pil).unsqueeze(0).cuda() # img_tensor = kornia.geometry.transform.warp_affine(img_tensor, trans_matrix, (256, 256)) save_tensor_to_img(img_tensor / 2 + 0.5, path=os.path.join('./crop', img_path)) img_tensor = F.interpolate(img_tensor, size=112, mode="bilinear", align_corners=True) # to 112 feat = fid_model(img_tensor) feats[idx] = feat target_feat = feats[target_idx].unsqueeze(0) cosine_sim = F.cosine_similarity(target_feat, feats, 1) print(cosine_sim.shape) print('====== similarity with %s ======' % img_list[target_idx]) for idx in range(n): print('[%d] %s = %.2f' % (idx, img_list[idx], float(cosine_sim[idx].cpu()))) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description="arcface") parser.add_argument("-i", "--target_idx", type=int, default=0) args = parser.parse_args() identification(target_idx=args.target_idx)