#!/usr/bin/env python from __future__ import annotations import argparse import pathlib import torch import gradio as gr from vtoonify_model import Model def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') return parser.parse_args() DESCRIPTION = '''
''' FOOTER = '' ARTICLE = r""" 如果VToonify对你有帮助请在Github Repo上为它点亮⭐.谢谢! [![GitHub Stars](https://img.shields.io/github/stars/williamyang1991/VToonify?style=social)](https://github.com/williamyang1991/VToonify) --- 📝 **Citation** If our work is useful for your research, please consider citing: ```bibtex @article{yang2022Vtoonify, title={VToonify: Controllable High-Resolution Portrait Video Style Transfer}, author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change}, journal={ACM Transactions on Graphics (TOG)}, volume={41}, number={6}, articleno={203}, pages={1--15}, year={2022}, publisher={ACM New York, NY, USA}, doi={10.1145/3550454.3555437}, } ``` 📋 **License** This project is licensed under S-Lab License 1.0. Redistribution and use for non-commercial purposes should follow this license. 📧 **Contact** If you have any questions, please feel free to reach me out at williamyang@pku.edu.cn. """ def update_slider(choice: str) -> dict: if type(choice) == str and choice.endswith('-d'): return gr.Slider.update(maximum=1, minimum=0, value=0.5) else: return gr.Slider.update(maximum=0.5, minimum=0.5, value=0.5) def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def set_example_video(example: list) -> dict: return gr.Video.update(value=example[0]), sample_video = ['./vtoonify/data/529_2.mp4','./vtoonify/data/7154235.mp4','./vtoonify/data/651.mp4','./vtoonify/data/908.mp4'] sample_vid = gr.Video(label='Video file') #for displaying the example example_videos = gr.components.Dataset(components=[sample_vid], samples=[[path] for path in sample_video], type='values', label='Video Examples') def main(): args = parse_args() args.device = 'cuda' if torch.cuda.is_available() else 'cpu' print('*** Now using %s.'%(args.device)) model = Model(device=args.device) with gr.Blocks(theme=args.theme, css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Box(): gr.Markdown('''## 第1步(选择卡通类型) - 选择 **卡通类型**. - 带有 `-d` 表示它可以调整卡通化的程度. - 不带 `-d` 通常会有更好的卡通效果. ''') with gr.Row(): with gr.Column(): gr.Markdown('''选择类型''') with gr.Row(): style_type = gr.Radio(label='Style Type', choices=['cartoon1','cartoon1-d','cartoon2-d','cartoon3-d', 'cartoon4','cartoon4-d','cartoon5-d','comic1-d', 'comic2-d','arcane1','arcane1-d','arcane2', 'arcane2-d', 'caricature1','caricature2','pixar','pixar-d', 'illustration1-d', 'illustration2-d', 'illustration3-d', 'illustration4-d', 'illustration5-d', ] ) exstyle = gr.Variable() with gr.Row(): loadmodel_button = gr.Button('加载模型') with gr.Row(): load_info = gr.Textbox(label='Process Information', interactive=False, value='No model loaded.') with gr.Column(): gr.Markdown('''类型参考 ![示例](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/style.jpg)''') with gr.Box(): gr.Markdown('''## 第2步 (对图片或视频进行预处理) - 拖动1个含有人脸的图片或视频到 **输入图像**/**输入视频**. - 点击 **缩放图像**/**缩放第1帧** 按钮. - 缩放输入使它更好的适用模型. - 最后的图像结果将是基于 **缩放后的脸**. 使用边框距离参数调整背景. - **若出现[Error: no face detected!]错误**: 是因为vtoonify没有检测到人脸,请调整后再试,或者更换原始图像. - 对于视频输入, 则点击 **缩放视频** 按钮. - 最后的视频结果将是基于 **缩放后的视频**. 为了避免超出硬件处理能力, 视频将被裁剪成 **100/300** 帧来适应 CPU/GPU. ''') with gr.Row(): with gr.Box(): with gr.Column(): gr.Markdown('''调整边框距离参数. ![示例](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/rescale.jpg)''') with gr.Row(): top = gr.Slider(128, 256, value=200, step=8, label='上') with gr.Row(): bottom = gr.Slider(128, 256, value=200, step=8, label='下') with gr.Row(): left = gr.Slider(128, 256, value=200, step=8, label='左') with gr.Row(): right = gr.Slider(128, 256, value=200, step=8, label='右') with gr.Box(): with gr.Column(): gr.Markdown('''输入''') with gr.Row(): input_image = gr.Image(label='输入图像', type='filepath') with gr.Row(): preprocess_image_button = gr.Button('缩放图像') with gr.Row(): input_video = gr.Video(label='输入视频', mirror_webcam=False, type='filepath') with gr.Row(): preprocess_video0_button = gr.Button('缩放第一帧') preprocess_video1_button = gr.Button('绽放视频') with gr.Box(): with gr.Column(): gr.Markdown('''View''') with gr.Row(): input_info = gr.Textbox(label='处理信息', interactive=False, value='n.a.') with gr.Row(): aligned_face = gr.Image(label='绽放脸', type='numpy', interactive=False) instyle = gr.Variable() with gr.Row(): aligned_video = gr.Video(label='绽放视频', type='mp4', interactive=False) with gr.Row(): with gr.Column(): paths = ['./vtoonify/data/pexels-andrea-piacquadio-733872.jpg','./vtoonify/data/i5R8hbZFDdc.jpg','./vtoonify/data/yRpe13BHdKw.jpg','./vtoonify/data/ILip77SbmOE.jpg','./vtoonify/data/077436.jpg','./vtoonify/data/081680.jpg'] example_images = gr.Dataset(components=[input_image], samples=[[path] for path in paths], label='示例图像') with gr.Column(): #example_videos = gr.Dataset(components=[input_video], samples=[['./vtoonify/data/529.mp4']], type='values') #to render video example on mouse hover/click example_videos.render() #to load sample video into input_video upon clicking on it def load_examples(video): #print("****** inside load_example() ******") #print("in_video is : ", video[0]) return video[0] example_videos.click(load_examples, example_videos, input_video) with gr.Box(): gr.Markdown('''## 第3步(生成 图像/视频)''') with gr.Row(): with gr.Column(): gr.Markdown(''' - 调整 **卡通化程度**. - 点击 **图像卡通化!** 来将第1帧卡通化. 点击 **视频卡通化!** 来让整个视频卡通化. - 预计时间 对于300帧的1600x1440视频 : 1 小时 (CPU); 2 分钟 (GPU) ''') style_degree = gr.Slider(0, 1, value=0.5, step=0.05, label='卡通化程度') with gr.Column(): gr.Markdown('''![示例](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/degree.jpg) ''') with gr.Row(): output_info = gr.Textbox(label='示例信息', interactive=False, value='n.a.') with gr.Row(): with gr.Column(): with gr.Row(): result_face = gr.Image(label='图像结果', type='numpy', interactive=False) with gr.Row(): toonify_button = gr.Button('图像卡通化!') with gr.Column(): with gr.Row(): result_video = gr.Video(label='视频结果', type='mp4', interactive=False) with gr.Row(): vtoonify_button = gr.Button('视频卡通化!') gr.Markdown(ARTICLE) gr.Markdown(FOOTER) loadmodel_button.click(fn=model.load_model, inputs=[style_type], outputs=[exstyle, load_info]) style_type.change(fn=update_slider, inputs=style_type, outputs=style_degree) preprocess_image_button.click(fn=model.detect_and_align_image, inputs=[input_image, top, bottom, left, right], outputs=[aligned_face, instyle, input_info]) preprocess_video0_button.click(fn=model.detect_and_align_video, inputs=[input_video, top, bottom, left, right], outputs=[aligned_face, instyle, input_info]) preprocess_video1_button.click(fn=model.detect_and_align_full_video, inputs=[input_video, top, bottom, left, right], outputs=[aligned_video, instyle, input_info]) toonify_button.click(fn=model.image_toonify, inputs=[aligned_face, instyle, exstyle, style_degree, style_type], outputs=[result_face, output_info]) vtoonify_button.click(fn=model.video_tooniy, inputs=[aligned_video, instyle, exstyle, style_degree, style_type], outputs=[result_video, output_info]) example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) demo.launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()